Microtracking and selfadaptive solar concentration

Jared Price, Taehwan Kim, Chris Giebink

Electrical Engineering Department Penn State University

Project started: Aug. 2012

Overview

collector field challenges

- wind-loading, environmental susceptibility
- infrastructure

minimizing the tracking requirement

- microtracking
- collection optic design
- solar thermal & concentrating PV
- waveguide coupling
- putting it all together

eliminating the tracking requirement

- self-adaptive concentrator responses

Linear CSP collector field

Motivating challenges:

- cost: significant tracking infrastructure
- wind loading: tracking error, collector field damage
- reliability: movable HTEs currently prone to failure

Opportunities for paradigm shift:

- <u>minimize</u> or even <u>eliminate</u> active tracking \rightarrow *static* collector field
 - immune to wind loading
 - > no moving parts \rightarrow reliable, low installation & maintenance costs
- lower cost components \rightarrow glass to plastic

Can we do this and maintain optical performance of a parabolic trough?

Microtracking

Advantages

- minimal tracking response:
 - ~1 cm of lateral translation required
 - tracking unaffected by wind
- potential for low cost:
 - plastic optics
 - flat glass sheet for waveguide

Design considerations

- tight focal point over <u>wide</u> angle in-plane
 - minimize coupling features \rightarrow outcoupling loss
- maximum scattering into waveguide
- maximize transmission to HTE

Oblique angle performance

Folded collection optic

Digression: microtracking + microcells

\rightarrow great potential for CPV

- 10x10 array of 15mm square lenslets
- 1mm square GaAs solar cells embedded between glass
- 400 900nm unpolarized sunlight

minimal heat loading

X. Sheng et. al. Adv. Energy Mater. (2013)

Waveguide coupling

 \rightarrow redirect collected light into confined modes

- light at focus: confined within ±45°
 → must be scattered >63° critical angle
- simple conical indentation:
 - \rightarrow 91% incoupling at 0°
 - \rightarrow 80% incoupling at 60°

-80

-80

-60

-40

-20

20

x angle (degrees)

40

60

80

A nonimaging problem

- maximum radiation transfer:
 - \rightarrow nonimaging optics \rightarrow angle transformer

Putting it all together

• geometric gain: G = L / 2t

100

80

60

40

20

0

0

10

20

optical efficiency (%)

- optical efficiency: $\eta_{opt} = P_{inc} / P_{edges}$
 - 2 mm glass sheet, L=0.45 m: G = 112x

compound parabaloidal scatterer

conic scatterer

40

50

60

30

incidence angle (°)

• concentration ratio: $CR = G \times \eta_{opt}$

Simulated array performance

• optics scale invariant \rightarrow larger size

Collection optic initial testing

- off-the-shelf 30 mm spherical lenses
 - spaced by glass sheets
- ~2 mm² Si photovoltaic cell
- manual micrometer adjustment
- simulated AM1.5D illumination

>100x increase in photocurrent for incidence beyond 50°

Self-adaptive response

the ultimate goal...

- focal intensity → drives local change in waveguide coupling
 - essentially a giant nonlinearity
- example:
 - local coupling triggered by thermal expansion

- flurry of recent work in this area:
 - 'Reactive solar concentrators...' K.A. Baker et. al. Appl. Opt. (2012)
 - 'Thermal phase change for self-tracking...' E.J. Tremblay et. al. Opt. Exp. (2012)
 - 'Light induced fluidic waveguide coupling' V. Zagolla et. al. Opt. Exp. (2012)

Can we do this efficiently & reliably?

Thermally-induced Wrinkling

- thermally-induced buckling in PDMS
 - elasticity + thermal expansion coeff.
 mismatch
 - \rightarrow µm-scale wrinkles form
- investigated wrinkle scattering efficiency into waveguide

Moving forward & scaling up

- partnering with LUXeXcel B.V.
 - > `printoptical' technology
 - inkjet printing optics
 - large area, volume capable
- collection optic assessment
 - microcell array collaboration with UIUC
 - CPV demonstration
- concentrator global optimization
 - toward 75% efficiency at G>80x
- scattering feature fabrication & testing

Conclusions

microtracking:

- minimal tracking motion: <2cm lateral movement
- avoids wind loading error
- compatible with stationary heat transfer elements

folded optic design:

- efficient collection 8 hrs/day
- simple, compact & potentially inexpensive
 - **CSP**: simulated G=112x, η_{opt} >60% 8hrs/day
 - **microcell CPV**: simulated G=225x, η_{opt} >72% 8hrs/day
- self-adaptive concentration: difficult to do well but high payoff
 - worth pursuing

promising development for concentrating solar power

Acknowledgements

Jared Price

- > 1st year EE PhD student
- Taehwan Kim
 - > 1st year EE PhD student
- Collaborators:
 - Xing Sheng, John Rogers; University of Illinois
 - LUXeXcel, Netherlands
- Funding:
 - SunShot CSP program (award# DE-EE0005798)

