

Low-Cost, Lightweight Solar Concentrators

California Institute of Technology/Jet Propulsion Laboratory

Award Number:0595-1612 | January 15, 2013 | Ganapathi

Technology Summary

- Project leverages extensive space experience by JPL and L'Garde to develop a low-cost parabolic dish capable of providing 4 kW thermal. Key features:
 - Metallized reflective thin film material with high reflectivity (>93%) with polyurethane foam backing
 - Single mold polyurethane backing fabrication enables low cost high production manufacturing
 - Ease of panel installation and removal enables repairs and results in a low total life cycle cost
 - Deployment of multiple dishes enhances system level optimizations by simulating larger fields which addresses issues like shared resources

Key Personnel

Dr. Art Palisoc, L'Garde Bill Nesmith, JPL Dr. Andrew Kindler, JPL **Program Summary** Federal funds: \$ 2.343M Cost-share: \$ 565K Period of performance: \$ 2.908M Total budget: 36 months **Key Milestones & Deliverables** Year 1 Material selection & fab processes validated · System trades to optimize overall system Year 2 · Facet and back support development Mechanical detailed design Year 3 Integrate 4 kW thermal dish concentrator Validation testing

Technology Impact

Current concentrators can cost as much as 40-50% of the total installed costs for a CSP plant. In order to reduce the costs from current \$200-\$250/m², it is important to focus on the overall system. The reflector surface is a key cost driver, and our filmbased reflector will help significantly in achieving DOE's cost target of \$75/m². The ease of manufacturability, installation and replacement make this technology a compelling one to develop. The technology can be easily modified for other CSP options such as heliostats and parabolic troughs.

Thin Film mirror is ~40-50% cheaper and 60% lighter than SOA