High Temperature Thermal Array for Next Generation Solar Thermal Power Production

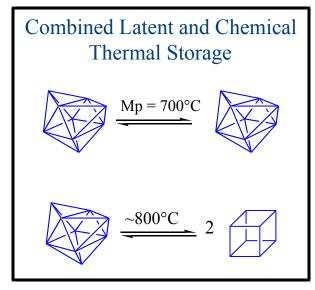
Robert Reid, Tom Jankowski, Cole Yarrington, Paul DeBurgomaster, Robert Currier, Leon Lopez, and Stephen Obrey

Project Start Date: December 1, 2012

UNCLASSIFIED

Presentation Outline

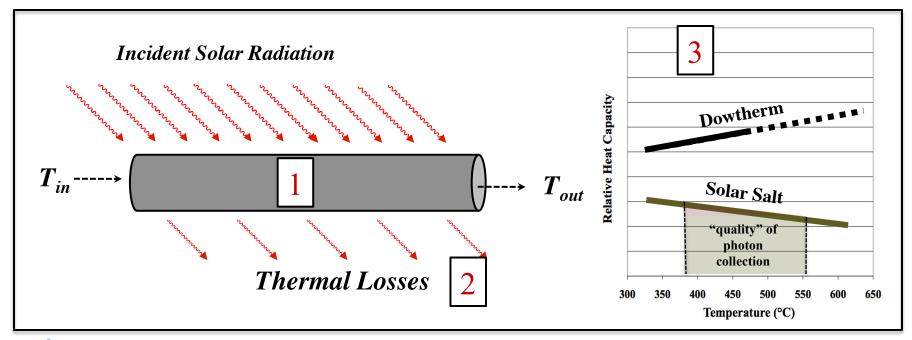
- 1. Los Alamos CSP Program Objectives
- 2. Technical Rationale
- 3. LANL Concentrated Solar ARRA Program
- 4. LDPD Project High Temperature Thermal Array
- 5. LDPD Project Goals and Technical Rationale
- 6. Technical Gaps for High Temperature Thermal Array
- 7. On-Going work and Technical Objectives



Los Alamos CSP Program Objectives

Development of technologies that maximize the thermodynamic availability of incident solar radiation delivered to power cycle.

- Optimized Photon Capture
- Thermal Energy Storage (Latent/Thermochemical)
- Power Cycle Development (High Temperature Rankine)
- Thermal Energy Transport and Delivery

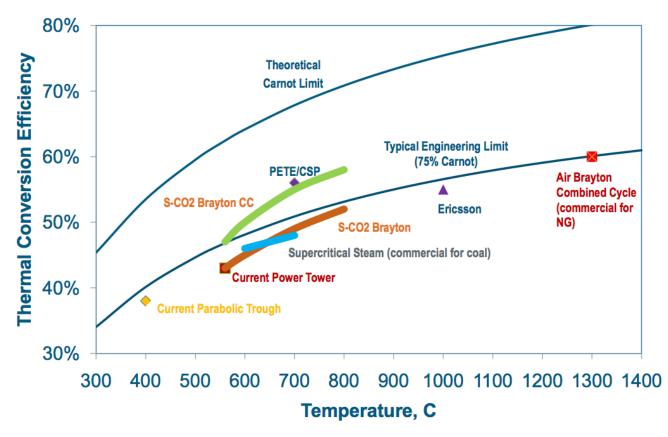


UNCLASSIFIED

Technical Rationale

Photons don't care about temperature...

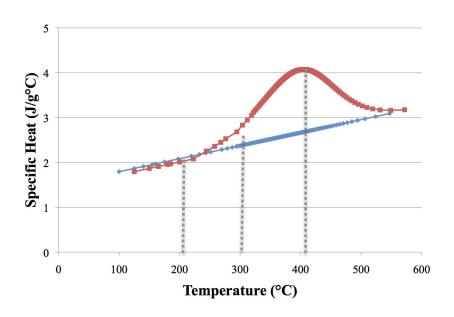
- 1. Photon energy assumes the thermodynamic state of the material impacted.
- 2. Energy capture (minus losses) results in incremental temperature changes.
- 3. Temperature change dictated by the thermal state of material impacted.

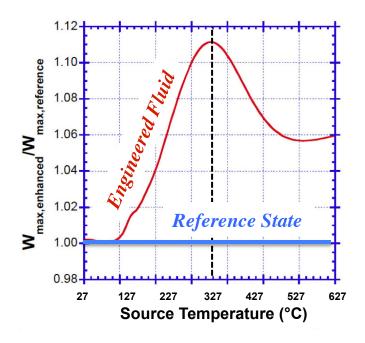


UNCLASSIFIED

Technical Rationale

...but power cycles do.



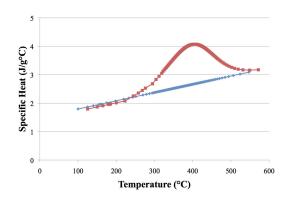

UNCLASSIFIED

LANL Concentrated Solar ARRA Program

Engineering HTF Specific heat yields modified power output.

A 10% increase in shaft work is directly attributable to modified thermal heat capacity

UNCLASSIFIED



ARRA Program Metrics and Program Goals

Development of High Thermal Stability HTF

Fluid Property	DOE Program Metrics
Thermal Stability	> 500 °C
Vapor Pressure at 500°C	< 5 atm
Freezing Point	> 80 °C
Specific Gravity	$0.7 - 1.7 \text{ g/cm}^3$
Heat Capacity to 500°C	2 − 5 J/g·°C
Viscosity to 500°C	~ 1 cP

• Chemically Engineer HTF Heat Capacity

• Validate Fluid and Performance Characteristics

UNCLASSIFIED

LANL CX500 fluid developed under ARRA

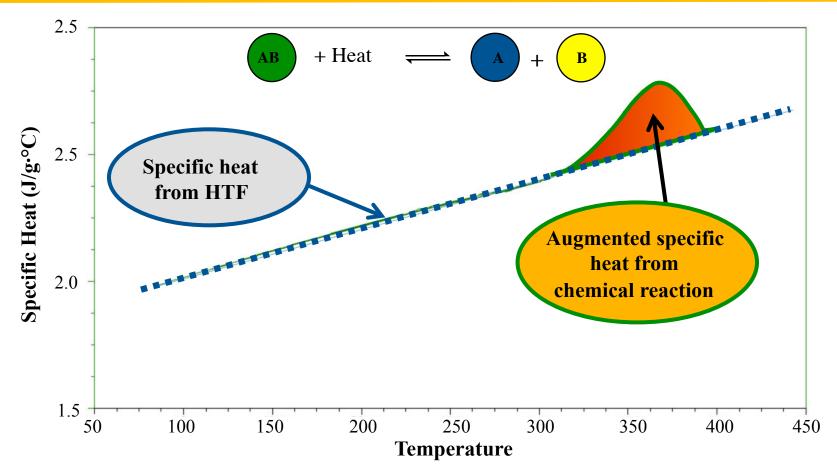
Fluid Properties

- Clear colorless low-viscosity fluid
- -40°C gel point
- Thermally Stable to +550°C.

Thermal and Processing Properties

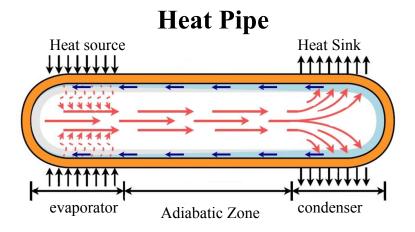
- Thermally cycled 4000 times from 300 to 550°C over a period of 52 weeks
- Prolonged exposure at 530°C for 180 days
- No hydrogen evolution observed during thermal processing.
- Corrosion properties comparable to Dowtherm and Syltherm through ASTM D 1384
 - 304SS, 316SS, 321SS, Hastelloy, Haynes Inconel
- Conductivity, viscosity, specific heat comparable to DowTherm

Environmental and Availability

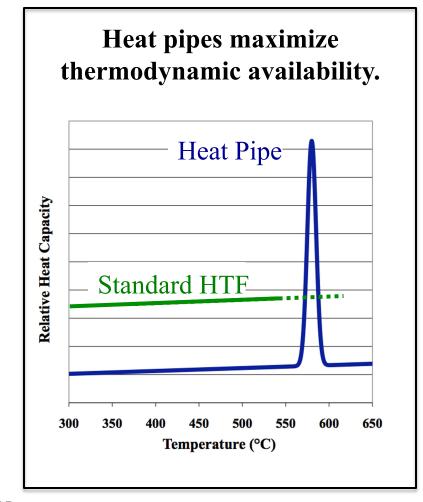

- Exempt from Federal VOC regulations and California (CARB)
- Starting material produced in megaton quantities.
- Price point comparable to Syltherm 800.

UNCLASSIFIED

Augmentation of HTF Specific Heat



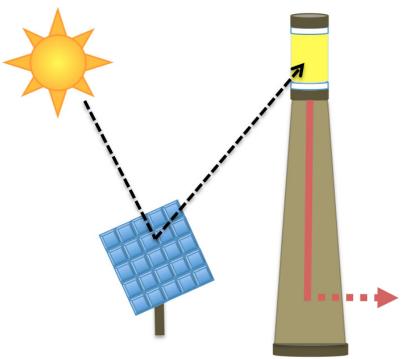
Chemical reaction reversible but decomposition noted after 50 cycles



UNCLASSIFIED

High Temperature Thermal Array

- Operates on principle of metal vaporization.
- Capillary action draws condensate to evaporator.
- Thermal energy captured as latent heat.
- Fastest method to transport thermal energy.
- Traditionally small and subject to gravity limitations.



UNCLASSIFIED

LDPD Project Objectives

LANL has developed a method to overcome traditional countergravity limitations which enables the construction of a heat pipe-based system suitable for megawatt-scale CSP tower system.

Project Goal: Development of technical knowledge gaps for heat pipe operation, heat pipe design and material science gaps to enable the cost-effective fabrication of a 300 ft CSP heat pipe-based tower operating at 1200°C.

UNCLASSIFIED

Advantages of Thermal Array

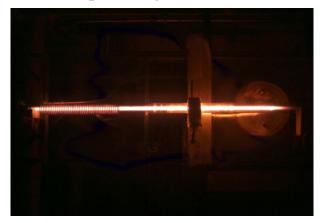
		Heat Transfer Fluid	Heat Pipe
Fluid expansion	n tanks	Yes	None
Current Temperat	ure Limits	600°C	1350°C
			1000
Heat Tracing		Yes	None
HTF Storage Tanks		Yes	None
Pumps, gasket	s, seals	Yes	None
Thermal Storage	Sensible	Yes	-
Compatibility	Latent	Yes	Yes
	Chemical	Yes	Yes

UNCLASSIFIED

Advantages of Thermal Array

		Heat Transfer Fluid	Heat Pipe	
Operational Temperature		-30 to 550°C	-220 to 2500°C	
NO. 10				
Working Fluid	650°C	Unknown composition.	Potassium	
Composition	800°C	Ionic salts, molten metals,	Sodium	
	1000 C	inert gas compositions	Sodium/Lithium	
	1200 °C		Lithium	
	ė s			
Working Fluid		Tons	Kilograms	
Quantities				
Materials of	650°C	Stainless Steel	Stainless Steel	
Construction	800°C	Superalloy	Stainless Steel	
	1000 C	Refractory Metal	Superalloy	
	1200 °C	Refractory Metal	Refractory Metal	
Typical Wall Thickness		mm	μm	
Corrosion Rates		Microns per year	Nanometers per year	

UNCLASSIFIED

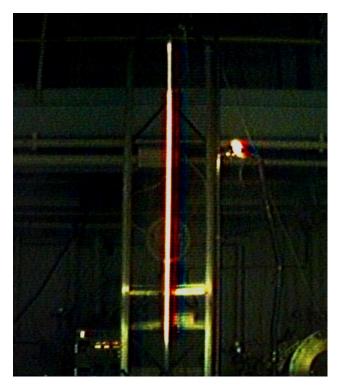


Major Technical Gaps and Challenges

- Heat Pipe Wick
- Counter-gravity Physics and Operations.
- Heat Pipe Start-Up and Thermal Cycling
- Thermal Array Construction Methods
- Field Scale System Design
- Field Deployment and Construction Method

Heat pipe array operating at 800°C

Thermal cycling studies operating at 1200°C.



UNCLASSIFIED

Phase 1: Counter-gravity Physics and Operations.

- Vertical counter-gravity heat transport is the most difficult orientation
 - Requires a wick structure with small pore size and free of defects
 - Capillary limit is reached at a lower power than in horizontal operation
- Counter-gravity operation is required for heat pipe use in CSP towers
 - Full characterization of countergravity physics and operation is essential for program success

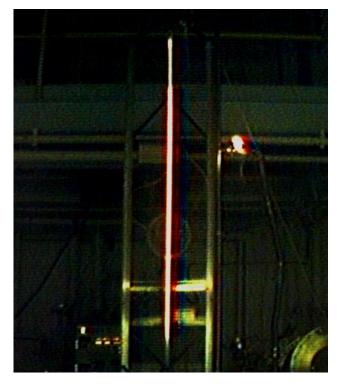
Lithium heat pipe operating at 1373 K with evaporator above condenser.

UNCLASSIFIED

Phase 1: Counter-gravity Physics and Operations.

Scaling heat pipe in development utilizing well understood with system design parameters

- Counter-gravity operation is required for heat pipe use in CSP towers
 - A test bed is developed to allow detailed performance analysis of heat pipes and heat pipe modules.
 - Instrumented heat pipes (both scaling and refractory) to be tested at various angles and thermal cycling.
 - Resistive and induction heating coupled with gas calorimetry.

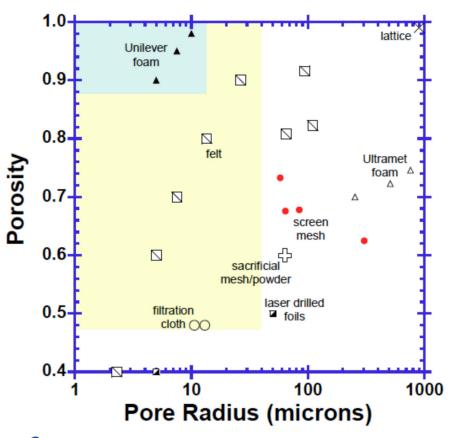

UNCLASSIFIED

Phase 1: Start-up and Thermal Cycling

Demonstration of counter-gravity start

- On shut-down, wick structure de-wets and metal solidifies.
- Repriming Technical Paths
 - passive fluid dynamic techniques
 - electromagentic priming
- Room-temperature prototype for passive start-up is being assembled for test
- •Unique artery system passively primes the wick structure

Lithium heat pipe operating at 1373 K with evaporator above condenser.

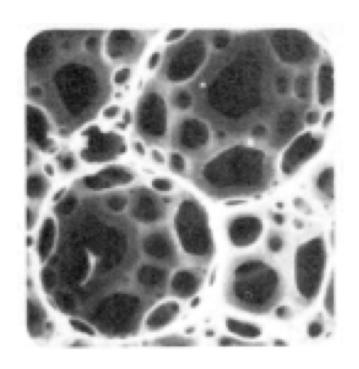


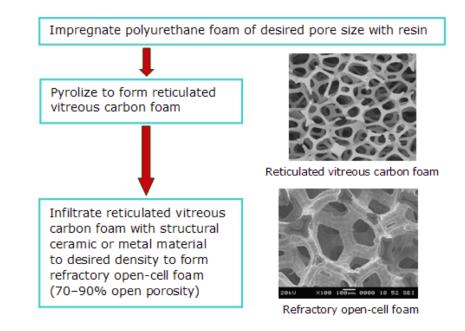
UNCLASSIFIED

Phase 1: Heat Pipe Wick Development.

Current wick structures are not optimized for cost effective Thermal Array.

- Wick porosity and pore radius are intimately tied to system performance and cost effective system design
- Small pore radius increases wick performance.
- High porosity increases liquid metal flow rates
- High porosity and small pore radius ensures low Thermal Array system cost.

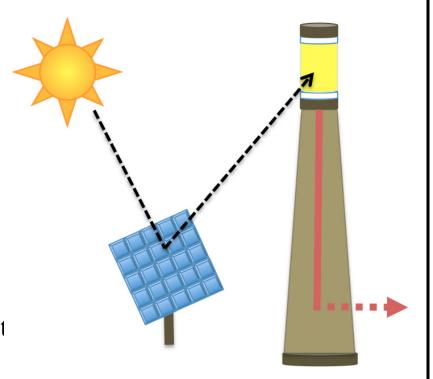



UNCLASSIFIED

Phase 1: Heat Pipe Wick Development.

Current wick structures are not optimized for cost effective Thermal Array.

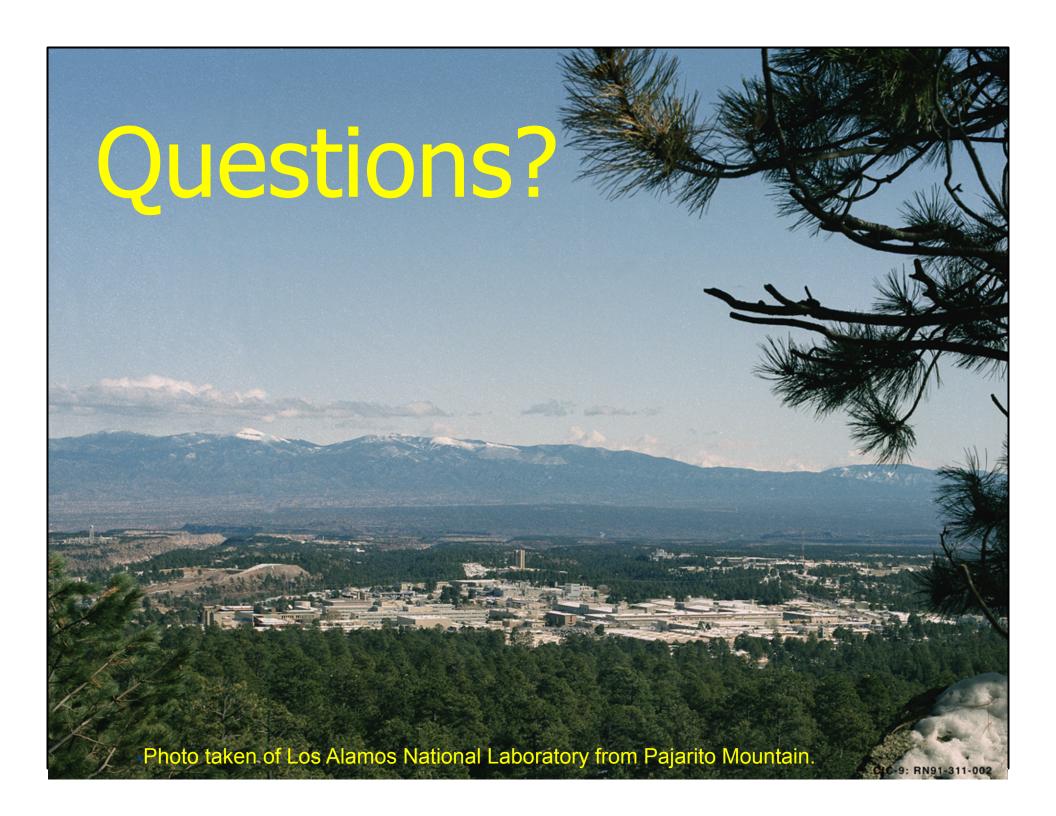
Recent advancements in deposition of refractory metal on sacrificial polymeric substrates enables a host of new wick compositions to be developed.


UNCLASSIFIED

Phase 2 and 3.

Phase 2

Wick development
Countergravity Physics and Operation
Heat Pipe Start-Up and Thermal Cycling
Field Assembly Technique Development


Phase 3.

Bench-scaled Thermal Array Fabrication
Performance testing
Field-scale system design and deployment

UNCLASSIFIED

