High Temperature Falling Particle Receiver

Award # DE-EE0000595-1558 Project Start Date: Oct. 1, 2012

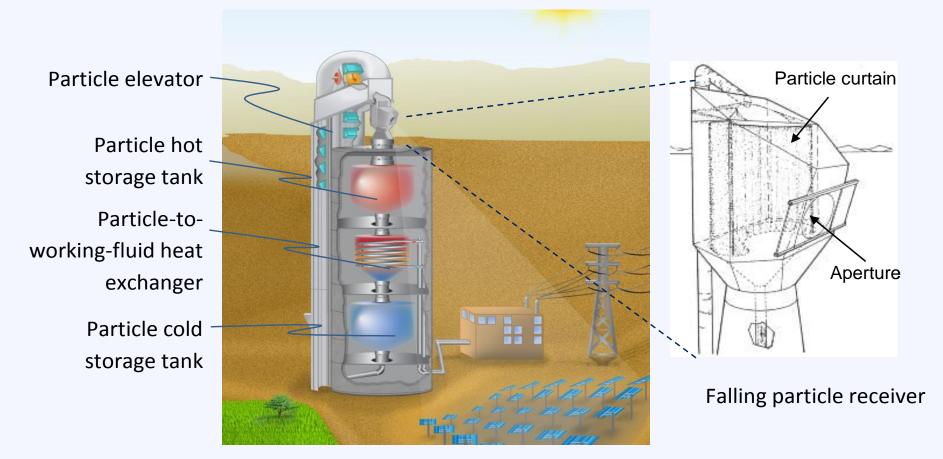
Contributors:

Sandia National Laboratories Georgia Institute of Technology **Bucknell University** King Saud University German Aerospace Center (DLR)

Presenter: Clifford K. Ho, SNL

SAND2013-2829C

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.


SunShot CSP Program Review 2013 *Phoenix*, AZ *April 23 – 25, 2013*

Exceptional service in the national interest

Technology Description

Falling Particle Receiver Technology

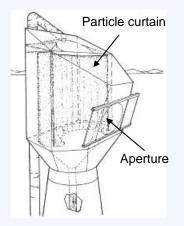
Presentation Overview

- Objectives
- Approach, Progress, and Results
 - Receiver
 - Particles
 - Balance of Plant
- Future Work

- Make advancements in falling particle technologies that will enable higher temperatures and greater efficiencies at a lower cost
 - I. Receiver designs
 - 2. Particle radiative properties and durability
 - 3. Balance of plant

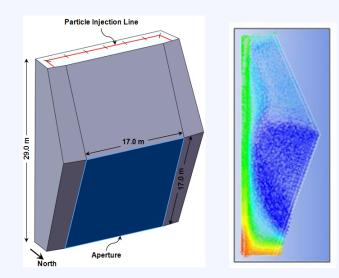
Subsystem 1: Receiver	Subsystem 2: Particles	Subsystem 3: Balance of Plant
1.1 Particle Recirculation (SNL)	2.1 Particle Radiative Properties (B, SNL)	3.1 Thermal Storage (KSU, GT)
1.2 Air Recirculation (SNL)	2.2. Particle Durability (GT, DLR)	3.2 Heat Exchanger (GT)
1.3 Interconnected Porous Structures (GT, KSU)		3.3 Particle Tower Lift (GT, KSU, DLR, SNL, B)

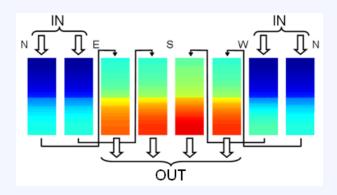
SNL = Sandia National Laboratories, GT = Georgia Tech, B = Bucknell University, KSU = King Saud University, DLR = German Aerospace Center



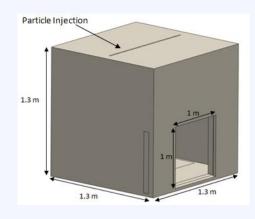
Presentation Overview

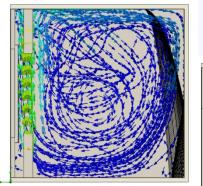
- Objectives
- Approach, Progress, and Results
 - Receiver
 - Particles
 - Balance of Plant
- Future Work



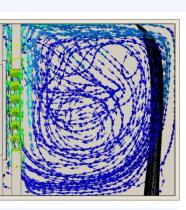

Receiver

Task I.I Particle Recirculation (SNL)





- Develop CFD models to evaluate and optimize receiver performance with varying recirculation designs
 - ANSYS FLUENT: Radiation, convection, discrete phase particles, turbulence
 - Two scales: 100 $\ensuremath{\text{MW}}_{\ensuremath{\text{e}}}$ and prototype for testing
 - Investigate effects of aperture size, tilt, baffle, dimensions, air curtain

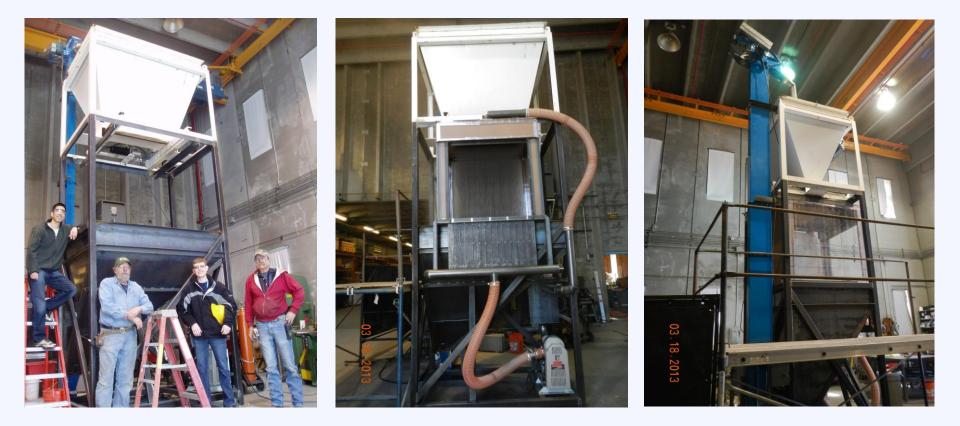


Task I.2 Air Recirculation (SNL)



I mm particle size

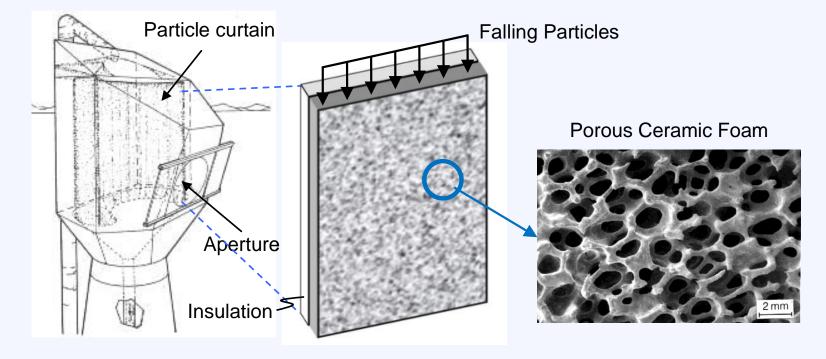
100 μm particle size



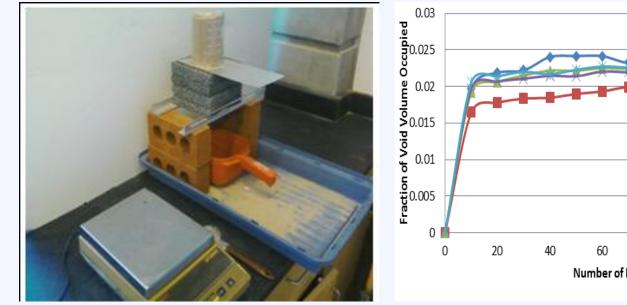
- Evaluate use of air recirculation in falling particle receiver to reduce heat loss and impacts of external wind
 - Prototype system constructed and modeled
 - Blower (bottom) and intake (top) for recirculation
 - CFD simulations show curtain stability impacted by particle size

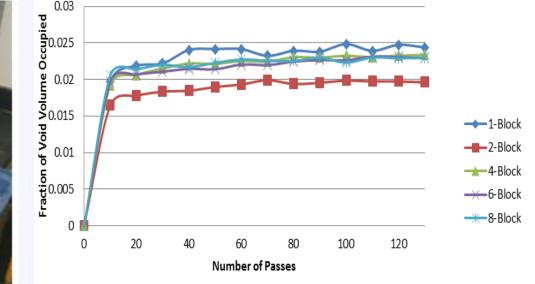


10 μ m particle size

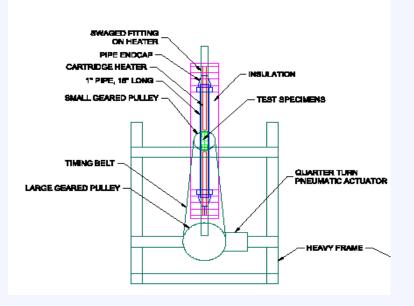

Prototype Receiver

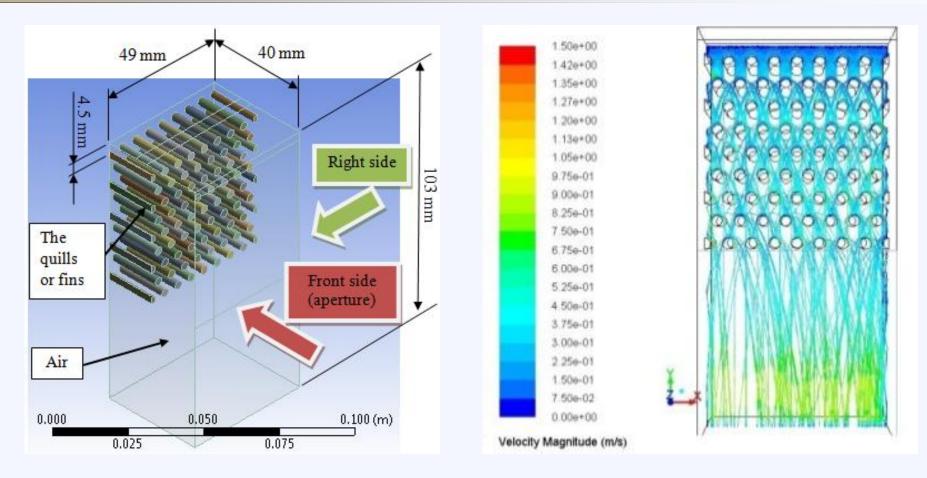
.: Current results show good particle stability with air curtain





Patent Pending


- Lab-scale evaluation of flow characteristics in ceramic porous structures
 - Measure the amount of sand accumulated in horizontally-stacked porous Silicon Carbide Ceramic blocks
 - Two, four, six and eight square-faced porous blocks were stacked
 - 100 mesh (~150 micron) fracking sand poured over blocks and weight measured after each set of 10 passes



- Lab-scale evaluation of porous structure thermal performance
 - Hourglass-like apparatus designed to test flow of particles through porous specimen in middle at elevated temperatures (up to 1000 C)
 - Apparatus rotated half-turn on timed intervals for many cycles
 - All components procured and construction has begun

Patent Pending

Evaluation of "porcupine" structure with quills to impede particle flow

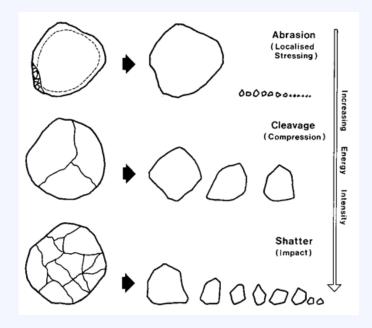
Particles

Task 2.1: Particle Radiative Properties (Bucknell, SNL)

Material Name	Туре	Solar weighted absorptivity	Thermal emissivity*	Selective Absorber Efficiency**
Carbo HSP	Sintered Bauxite	0.934	0.843	0.864
CarboProp 40/70	Sintered Bauxite	0.929	0.803	0.862
CarboProp 30/60	Sintered Bauxite	0.894	0.752	0.831
Accucast ID50K	Sintered Bauxite	0.906	0.754	0.843
Accucast ID70K	Sintered Bauxite	0.909	0.789	0.843
Fracking Sand	Silica	0.55	0.715	0.490
Pyromark 2500	Commercial Paint	0.97	0.88	0.897

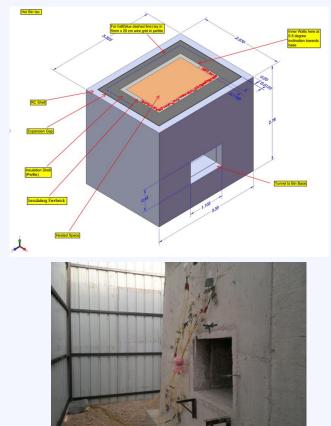
*Spectral directional reflectance values were measured at room temperature. The total hemispherical emissivity was calculated assuming a surface temperature of 700 °C. $\alpha Q - \epsilon \sigma T^4$

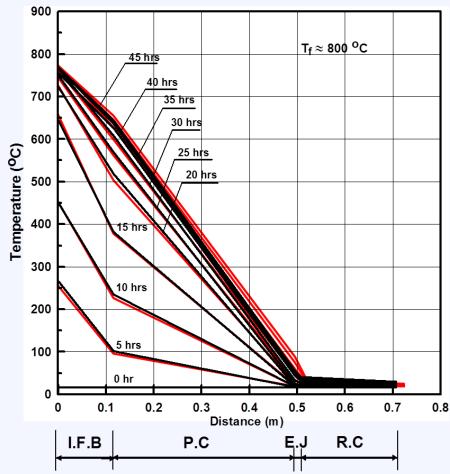
**Q is assumed to be $6x10^5$ W/m² and T is assumed to be 700 °C (973 K): η_{sel}


$$u_{l} = \frac{\alpha_{s}Q - \varepsilon\sigma T^{4}}{Q}$$

Task 2.2 Particle Durability (Georgia Tech, DLR)

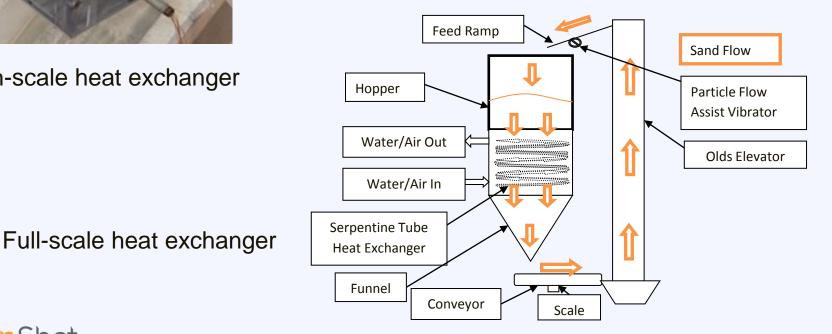
- Design and construction of laboratory test for surface impact evaluation
 - Evaluated attrition mechanisms
 - Abrasion is primary mode for our case
 - Devices for three drop heights were constructed (0.5, 1.72, and 10 m)


Balance of Plant

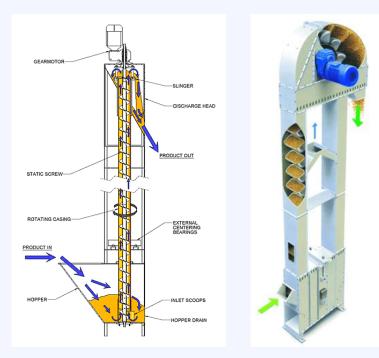


Task 3.1 Thermal Storage (KSU and Georgia Tech)

 Experimental evaluation and modeling of prototype thermal energy storage designs



Task 3.2 Particle to Working Fluid Heat Exchanger (Georgia Tech)


Bench-scale heat exchanger

- Experimental evaluation of heat transfer coefficients & particle flow
 - Heat exchanger module designed and instrumented for continuous sand flow over heated tubes

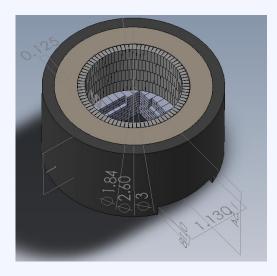
Task 3.3 Particle Lifts (GT, SNL, DLR)

- Evaluate commercial particle lift designs
 - Requirements
 - 5 10 kg/s
 - Particle loss $\leq 0.01\%$ of mass flow
 - Operating temperature ~ 500 °C (assumes ∆T during last drop of >200 °C)
 - Different lift strategies evaluated
 - Olds Elevator
 - Screw-type
 - Bucket
 - Mine hoist

Presentation Overview

- Objectives
- Approach, Progress, and Results
 - Receiver
 - Particles
 - Balance of Plant

- Receiver
 - Conduct optimization of receiver efficiency using CFD models
 - Perform tests with prototype receiver to investigate proposed enhancements
 - Continue evaluation of flow through porous media for increased residence time and particle heating


- Particles
 - Complete optical characterization of particles
 - Initiate development of new formulation for increased solar absorptance
 - Identify methods to mitigate abrasion and attrition

25

- Balance of plant
 - Continue testing of prototype thermal storage bins using new geometries
 - Perform particle-to-fluid heat exchanger tests to measure heat transfer coefficients over range of materials, configurations, and operating parameters
 - Continue investigation of particle elevators that satisfy requirements for flow rate, temperature, and particle retention

Acknowledgments

Sandia National Labs

- Josh Christian, Dave Gill, Daniel Ray, JJ Kelton, Cheryl Ghanbari, Bill Kolb

Georgia Tech

 Sheldon Jeter, Said Abdel-Khalik, Dennis Sadowski, Jonathan Roop, Ryan Knott, Matt Golob, Clayton Nguyen, Evan Mascianica, Matt Sandlin

Bucknell University

- Nate Siegel, Michael Gross

King Saud University

 Hany Al-Ansary, Abdelrahman El-Leathy, Eldwin Djajadiwinata, Abdulaziz Alrished

DLR

– Lars Amsbeck, Reiner Buck, Birgit Gobereit

Clifford K. Ho ckho@sandia.gov (505) 844-2384

Backup Slides

