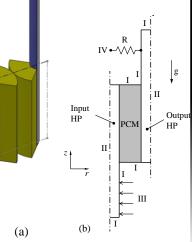


Dish Stirling High Performance Thermal Storage

Sandia National Laboratories

April 15, 2013 | Andraka




## **PROJECT OBJECTIVES**

## Goal:

| <ul> <li>Demonstrate the feasibility of significant thermal storage for dish Stirling systems to leverage their existing high performance to greater capacity</li> <li>Demonstrate key components of a latent storage and transport system enabling on-dish storage with low exergy losses</li> <li>Provide a technology path to a 25kW<sub>e</sub> system with 6 hours of storage <u>Innovation</u>:</li> <li>Leverage high performance heat pipes to support feasible system layout</li> <li>Develop and test high temperature, high performance PCM storage</li> <li>Optimize storage configuration for cost and exergy performance</li> <li>Latent storage and transport matches Stirling cycle isothermal input<sup>1</sup> <u>Q2 Milestones</u>:</li> <li>Downselect at least 1 salt and 2 metallic PCM's for in-depth evaluation and sample testing</li> <li><sup>1</sup>Andraka, C.E., Rawlinson, K.S., Siegel, N.P., "Technical Feasibility of Storage on Large Dish Stirling Systems," Sandia report SAND2012-8352 (2012).</li> </ul> | <ul> <li>Literature searches and modeling to develop candidate eutectics</li> <li>Sample fabrication and characterization to develop properties</li> <li>Modeling of compatibility with potential containment</li> <li>Long-term testing of compatibility</li> <li>Storage optimization</li> <li>Advanced modeling of PCM/heat pipe interfaces including free convection<br/>in combined solid/liquid states</li> <li>Exergy and cost optimization</li> <li>2-D and 3-D models</li> <li>Heat Pipe</li> <li>Felt wick enhancements for robust high performance</li> <li>Proof-of-concept hardware subscale demonstration</li> <li><sup>3</sup>Shabgard, H., Faghri, A., Numerical Simulation of Latent Heat Thermal Energy Storage (LHTES) Systems<br/>for Solar Steam Generation Applications, to be submitted to peer-reviewed journal (2013).</li> <li><sup>4</sup>Shabgard, H., Robak, C.W., Bergman, T.L., Faghri, A., "Heat transfer and exergy analysis of cascaded latent<br/>heat storage with gravity-assisted heat pipes for concentrating solar power applications," Solar Energy 86 (3)<br/>(2012) 816–830.</li> </ul> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Q2 KEY RESULTS AND OUTCOMES</li> <li>2-D PCM model extended to<br/>include realistic heat pipe boundary</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>NEXT QUARTER</b> PCM candidate evaluation • Fabricate and evaluate remaining metallic PCM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>Begin design of long-term compatibility test</li> <li>Evaluate methods for corporing courts compatibility issues</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

- 2-D model temporal cyclic results generated for salt PCM
- PCM Down-selection to two metallics and two salts completed (milestone)
- One metallic PCM fabricated and tested to verify thermal properties.
- First cut analytical analysis (HSC) of containment compatibility performed on metallic PCMs
- Advanced heat pipe wick options narrowed through analytic and merit analysis



Evaluate methods for screening acute compatibility issues

APPROACH

2-D PCM model development

PCM development and selection

- · Add turbulent natural convection features during melt
- Add gravity vector and density variation
- Prepare manuscript on 2-D model

Heat pipe advanced wick development

Begin fabrication and testing of wick samples

Systems analysis

- Extend model based on findings of 2-D PCM model
- Extend model for probabilistic studies

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000