Concentrated Solar Thermoelectric Power

Principal Investigator: Prof. Gang Chen

Massachusetts Institute of Technology

Cambridge, MA 02139

gchen2@mit.edu

http://web.mit.edu/nanoengineering/

Subcontractor: Prof. Zhifeng Ren University of Houston

DOE EERE CSP Program: Funding Category: Seed Concept

Solar to Electricity Conversion

Solar Electricity: PV

http://www.homesolarpvpanels.com

Solar Electricity: Thermal-Mechanical

http://www.treehugger.com/Solar-Thermal-Plant-photo.jpg

Thermoelectric Devices and Effects

Nondimensional Figure of Merit

Reverse Heat Leakage
Through Heat Conduction

Solar Thermoelectric Energy Conversion

Solar Thermoelectrics

- US Patent No. 389124:
 E. Weston in 1888
- M. Telkes, JAP, 765, 1954

Efficiency: 0.63%

Heat Flux Considerations

$$q = k \frac{\Delta T}{L} \approx 1 \frac{W}{m * K} \frac{100 \text{ K}}{L}$$

 $q=1000 \text{ W/m}^2 (1 \text{ Sun});$ L=100 mm $q=100,000 \text{ W/m}^2 (100 \text{ Sun});$ L=1 mm

Optical vs. Thermal Concentration

Flat Panel Solar Thermoelectric Generators (STEGs)

Kraemer et al., Nature Materials, May, 2011

Two-Stage Concentrated STEGs

Program Goals

- Demonstrate 10% solar-to-electric energy conversion by using optical concentration and a multi-stage TEG
- Limit required optical concentration to less than 10X, ideally less than 4X
- Demonstrate the potential for 24-hour operation by incorporating phase change materials into design

Core Team

Professor Gang Chen, Principal investigator

Dr. Sveta Boriskina **Optical Engineer**

Ken McEnaney **Device Engineer**

Daniel Kraemer System Engineer

Lee Weinstein System Engineer

Professor Zhifeng Ren Co-Principal Investigator

Dr. Qing Jie Materials Scientist

Dr. Feng Cao **Materials Scientist**

Dr. Weishu Liu **Materials Scientist**

Major Tasks and Challenges

- Devices
 - Electrodes
 - Device joining
- Emittance
 - Selective surfaces
 - Optical design
- Systems
 - Modeling
 - Integration
 - Testing

Effect of electrodes and contacts:

 Parasitic losses have a linear negative effect on system performance

Effect of absorptance/emittance:

TEG Optimization: Critical Parameters

- Geometry must be optimized to
 - Reduce parasitic effects of electrode and contact resistance
 - Reduce effect of radiative losses from sidewalls
- For each thermoelectric leg:

Electrodes: Material Properties

- Bi₂Te₃ electrodes: <1% of system resistance
- New p-type skutterudite electrode alloy:

Electrical resistivity reduced by a factor of 3+

Thermal conductivity increased 50% – 200%

Electrodes: Contact Resistance

- Bi₂Te₃/copper contact resistance < 1 μΩ•cm²
- Skutterudite/electrode contact resistance:

n-type: $<1 \mu\Omega \cdot cm^2$

p-type: $6 \mu\Omega \cdot cm^2$

TEG Device Testing

- Currently testing single-stage devices; 9% efficiency recorded.
- Multi-stage devices should boost efficiency to ~13%

Selective Surfaces

- Optimized for operating temperature (500 600 °C)
- Manufactured via sputtering

Surfaces with copper substrates not stable at high T

Emittance Testing

<u>Direct</u> measurement of <u>total hemispherical</u> emittance at <u>high T</u>:

Receiver Cavity

 Receiver cavity can reduce heat loss from black surface or selective surface

With blackbody absorber:

With 20% selective surface:

Additional Leverage

Experience:

- Materials
- Devices
- Heat Transfer
- Multiple Start-ups
- Other Programs:
 - EFRC S³TEC: thermoelectric materials
 - ARPA-E HEATS: Storage

Transformative Potential

- Third way: sunlight into electricity
- Low cost due to:
 - Solid state power block
 - Low optical concentration
 - Small amount of materials
 - Thermal storage
- Large market
 - Rooftops
 - Small communities
 - Power plants

