

Concentrating Solar Power – Program Review 2013

Advanced Ceramic Materials and Packaging Technologies for Realizing Sensors for Concentrating Solar Power Systems

Sporian Microsystems, Inc.

www.sporian.com

PI: Dr. Yiping Liu

Presenter: Dr. Mike Usrey

Subcontractor:

University of Wisconsin Thermal Hydraulic Laboratory

Project start date: November 15, 2012

Outline

- About Sporian Microsystems, Inc.
- Review Sporian's HT Sensor Technology
- Project Motivation and Background
- Phase I Objectives, Innovation and Approaches
- -Technical Results and Analysis
- Significance of the Results and Challenges
- Project Milestones to Date
- Accomplishments and Future Work Planned

Sporian Overview and Technology Focus

- Founded in 2000, focuses on advanced sensors, packaging and systems
- Develop and commercialize sensors/systems for a range of industries:
 - Energy Generation Aerospace and Transportation
 - Environmental Safety
 Water Health Management
 Biomedical
 - Asset Monitoring Integrated Vehicle Health Monitoring Homeland Security

Sporian High-temperature Harsh Environment MEMS Sensors and Packaging

R&D Efforts for High-temperature Sensors and Packaging:

- Directly monitor the most harsh environments and costly components
 - High-temperature: up to 1400°C
 - High-pressure: up to 1000 psi
 - Temperature Pressure Flow sensors
 - Energy Generation Applications
 - Concentrated Solar Power (CSP)
 - Nuclear Power Generation
 - Fossil Fuel (Gas/Coal) Turbine Applications
 - Aerospace Applications
 - Aerospace conformal sensor packaging
 - Smart sensor system
- Packaging is critical to facilitate sensor utility in various environments

Sporian Sensor Technology

Core Technology:

Proprietary Polymer Derived Ceramic Materials & Micro-fabrication Process

Prior Demonstrated HT Sensor Technology:

- Thermo/piezo-resistive temperature/pressure sensor suite
- Capacitive based pressure sensor
 Hot wire based flow sensors

Future Electronic Packaging

Strong Pull from OEMs to Add "Smart" Functionality to Sporian Existing Sensor and Packaging Technology

- Digital/bus interface
- Internal compensation/calibration
- Internal health check/indication
- Implemented with HT electronics
- Small electronics: bump on cable

Project Motivation and Background

- Needs of Concentrated Solar Power Systems:
 - Robust sensing systems for safety/efficiency monitoring and control
- Primary Technical Challenges:
 - Extremely harsh working conditions
 - High Operating Temperature (HOT) fluids
 - Highly corrosive molten salt environments
- Preliminary Solar Salt Testing of Sporian PDC at Sandia National Laboratory:
 - PDC tested in nitrate(60/40) solar salt at 300°C for 500 hr
 - No visible surface corrosion or measurable mass change
 - Demonstrated PDC as a potential high-T sensing material in HOT fluid environments for CSP applications
- Long-Term Goal:
 - Leverage Sporian sensor/packaging technology to support applications in CSP systems:
 - Pressure Flow Temperature Level sensors

Phase I Objectives and Approaches

- 1. Experimentally evaluate the suitability of PDCs as innovative sensing materials in CSP HOT fluids
- 2. Based on the results, develop *innovative* sensor and packaging concepts for future development

Participant Roles and Approaches:

- Sporian:
 - PDC sensor material identification and sample fabrication
 - Pre- and post-test material testing and evaluation
 - Conceptual sensor/packaging designs and preliminary prototyping
- Subcontractor, Consultant and in-kind Support:
 - Thermal Hydraulic Laboratory at the University of Wisconsin (UW)
 - Consult on CSP sensor environments and operation parameters
 - Identify potential molten salts and conduct HOT fluid testing
 - Pre- and post-test corrosion-resistivity evaluation

- CSP subject matter experts and establish system/sensor OEMs
 - Consult on sensor/package requirements and specification development

Key Technical Requirements

Identification of Overall Operational and Interface Requirements

- Operation environments: Daily T-cycling and system draining
- Challenges: HT molten salt corrosion and flow erosion
- Flow spinning, turbulence and vibration caused damages
- Extreme scenarios: System solidification and re-melting
- Identified 4 potential sensor types of high interest: T/P, flow, level
- Identified sensor locations and measurement ranges/resolutions
- Identified candidate packaging materials: Ni-superalloys, etc.
- Established Key requirements for sensor and packaging design
- Identified critical factors for hardware implementation
- Identified follow-on system integration standards and approaches

Preparation of PDC Samples

Identification of PDC Formulations for Phase I Evaluation Efforts

- High temperature material stability and electrical conductivity
- Excellent oxidation and corrosion resistance for CSP applications
- Characterization of the material/mechanical/electrical properties
- Design and fabricate PDC coupons for HOT fluid testing in UW

Four Groups of PDC Samples Measured before Testing

Sample Weight (gram)	Salt-1 (S1) Nitrate	Salt-2 (S2) Carbonate	Salt-3 (S3) Chloride	Reference (R)
P1	0.2677	0.2742	0.2520	0.2507
A1	0.6133	0.5741	0.6051	0.5936
P3	0.2407	0.2299	0.2176	0.2698
A3	0.2818	0.2966	0.2991	0.2833

PDC Coupons for Molten Salt Testing

Nickel Wire was Used to Hold the Samples

Technical Analysis Approaches

- **Weight and Dimension Measurements and Analysis**
- Surface Characteristics and Analysis: Microscope, Profilometer and SEM
- **Elemental Analysis and Chemical Characterization: EDS**
- **Mechanical Strength and Electrical Properties Evaluation** (as appropriate)

Surface Roughness Maps of PDC Reference Samples

SEM Surface Scans of PDC Reference Samples

P1: Low magnification show very little structure.

P1W: High mag. shows structure and surface cracks show very little structure

P3: Low magnification

A3: Low mag. shows pits and some surface marks

EDS Elemental Analysis of Reference Sample:

500hr Solar Salt Exposure Testing

3 Different CSP Relevant Inorganic Salts and Test Facility in UW

HOT Fluid Mixture	M.P. [°C]	T.S.B.P. [°C]	Test T	Duration [hour]	Cp [J/g-K]	V.P. @800°C	Corrosion with SS	Cost [\$/kg]
DOE's Target	250	800			1.5	<1atm	Excellent	<1
NaNO ₃ KNO ₃	228	600	550°C	500 hr	1.5	<1atm	Good	~1
K ₂ LiNa ₂ CO ₃	397	>830	650°C	500 hr	1.8	<1atm	Fair	~2
KCI MgCl ₂	426	>1418	750°C	500 hr	na	<0.1atm	Fair	~0.2

PDC Samples before/after Cleaning

Nitrate Salt 550 °C

Carbonate 650 °C

Chloride Salt 750 °C

Key Technical Results and Analysis

PDC Sample Specification and Weight Loss (%)

Laser Mark	Formulation	Heat-treatment	Nitrate	Carbonate	Chloride
P1	#1	Pyrolized	N/A	129%	-3.0%
P1w (A1)	#1	Annealed	-11%	-51%	0.3%
P3	#3	Pyrolized	-39%	-75%	-0.7%
A3	#3	Annealed	-6%	-38%	0.5%

Remarks:

- 1. PDC formulation-3 showed better corrosion resistance than formulation-1
- 2. Annealed samples showed less weight loss than pyrolyzed counterparts

Nitrate Salt Test Results and Analysis

550°C-500hr

S1P1

S1P1W

S1P3

S1A3

Microscope Images:

Moderate corrosion and pits/holes

N/A

Post-test sample dissolved upon cleaning

Surface Roughness:

Increased from ±2µm to ±50µm

SEM Images:

Moderate corrosion and small to large pits

EDS Elemental Analysis:

No distinct elemental characteristics, suggests dissolving other than compound formation

Carbonate Salt Test Results and Analysis

650°C-500hr

Microscope Images:

Severe corrosion and damages

S2P1

Post-test sample crumbled

N/A

S2P1W

N/A

S2P3

Post-test sample crumbled

S2A3

Surface Roughness:

Increased from ±2µm to ±50µm

+13.27343 μm

SEM Images:

Severe corrosion, pitting, crack, swelling and delamination

EDS Elemental Analysis:

No distinct elemental characteristics on sample surface

Chloride Salt Test Results and Analysis

750°C-500hr

Microscope Images:

Minor corrosion; rough patches

S3P1 Smooth with some rough patches streaks

S3P1W

S3P3

Surface Roughness:

Small increases from ±2 to ±5µm

-2.87461 µm

SEM Images:

Minor corrosion; smooth surfaces

EDS Point Scan Analysis:

- Point scans show similar results as full EDS maps.
- No distinct characteristics between different locations.
- No oxide or other compound formations.

Significance of the Results and Challenges

Significance of the Results:

- PDC materials are thermally and chemically stable in high-T molten salts.
- Corrosion mechanism is mainly dissolving started at surface defects.
- PDC samples showed good corrosion resistance in 750°C-500hr chloride test.
- Some of the PDCs showed better corrosion resistance trend than the others.
- Protective packaging is needed to avoid molten salt attack in nitrate and carbonate.

Challenges:

- Corrosive molten salt environments for direct-contact sensors
- Need protective packaging design for pressure and flow sensors

Important Milestones:

- End of Month 4: A fundamental understanding/definition of key requirements for practical implementation of proposed hardware technology *(completed)*.
- End of Month 4: Identified optimal PDC formulations for CSP applications and fabricated test coupons for Phase I corrosion evaluations (completed).
- End of Month 6: Evaluation and feasibility demonstration of choice PDC ceramics in relevant HOT fluids for CSP applications *(completed)*.
- End of Month 9: Preliminary designs and prototyping of the sensors, packaging and electronics, and a definitive development plan for Phase II (currently ongoing).