

Pioneering Heat Pump Project

May 3, 2010

Principal Investigator
Prof. Dave Aschliman
Indiana Institute of Technology

Ground Source Heat Pumps > Technology Demonstration

Overview

Indiana Tech Pioneering Heat Pump Project

Timeline

Project start date: 1/29/2010

Project end date: 9/30/2014

• Percent complete: 15%

Budget

Total Project Cost: \$2,679,182

DOE Funding Level: \$ 1,339,591

Indiana Tech Level: \$ 1,339,591

• FY10 Planned: \$ 1,836,774

Barriers

Aggressive Schedule: May – August, 2010

Partners

WaterFurnace International & Primary Engineering

Relevance/Impact of Research

Objectives of Indiana Tech Pioneering Heat Pump

Innovation

- To install and monitor an innovative WaterFurnace geothermal system that is technologically advanced and evolving
- To generate hot water heating from a heat pump that uses non-ozone depleting refrigerant CO₂

Demonstration

- To demonstrate the energy efficiency of this system ground source heat pump system
- To demonstrate the environmental safety of this type of technologically advanced system

Relevance/Impact of Research

Objectives of Indiana Tech Pioneering Heat Pump

Demonstration (continued)

- To demonstrate the cost effectiveness of this geothermal system
- To demonstrate the feasibility to replicate the system throughout the United States

Data Analysis & Marketing

- To collect data to prove the benefits of the system
- To share the results of data collection and research analysis
- To market the efficacy of geothermal systems, including this unique approach

Scientific/Technical Approach

- Indiana Tech (Professors and Students), WaterFurnace International, and Primary Engineering will Monitor, Test, and Analyze the Geothermal System
- Daily, Monthly, and Annual Data Analysis is Required
- Daily Data Collection Includes:
 - Total power usage for all heat pumps in Administration Building and Zollner Engineering Center
 - Total power usage in the pump house
 - Total number of Heating Degree Days and total number of Cooling Degree Days

Scientific/Technical Approach

 Twice per Day, the Following Data are Collected for One Water-to-Air Heat Pump and One CO₂ Water-to-Water Heat Pump

(Compressor	Temperature &	Pressure

Scientific/Technical Approach

- Monthly and Annual Data Collection Includes:
 - Total power usage for all heat pumps in Administration Building and Zollner Engineering Center
 - Total power usage in the pump house
 - Total number of Heating Degree Days and total number of Cooling Degree Days
- Planned Milestones for FY10 are On-Schedule and Include:

Open BidsApril 29, 2010

Begin pump house construction
 May 2010

Install well fields
 May – August, 2010

Install equipment in Admin Building
 June 2010

Install equipment in Zollner Building
 Fall 2010

Accomplishments, Expected Outcomes and Progress

Technical Accomplishments for Pioneering Heat Pump

- Phase 1 Feasibility Study and Engineering Design Tasks have been Completed
 - Feasibility is determined
 - Engineering/Design work is completed
 - Permits required to proceed to Phase 2 are approved
 - Bid Solicitation is completed
- Geothermal System Design is Completed. Design Includes Ground Loop, Pump House, Vertical Wells, and Changes to Administration Building and Zollner Engineering Center

Accomplishments, Expected Outcomes and Progress

Technical Accomplishments for Pioneering Heat Pump

- Campus Distribution Ground Loop Design Includes:
 - 2,000 feet of 12 inch diameter ductile iron pipe
 - 30,000 gallons of water with no glycol
- Vertical Well Design Includes:
 - Approximately 40 wells under parking lot
 - Approximately 10 wells adjacent to Administration Building
 - 400 feet deep
 - 1.25 inch diameter polyethylene pipe
- Pump House Design Includes:
 - 4-20 hp pumps
 - Redundant design

Accomplishments, Expected Outcomes and Progress

Technical Accomplishments for Pioneering Heat Pump

- Administration Building Changes Include:
 - 8 water-to-air heat pumps
 - R-410 A refrigerant
 - 30 tons of cooling
 - 1 heat pump with temperature and pressure sensors
- Zollner Engineering Center Changes Include:
 - 5 water-to-water heat pumps
 - 4 of 5 using R-410A refrigerant
 - 1 of 5 using CO₂ refrigerant
 - 100 tons of cooling
 - CO₂ heat pump with temperature and pressure sensors

Project Management/Coordination

- Project has three investigators with Dave Aschliman from Indiana Tech serving as the principal investigator
- Investigators are: Carl Huber from WaterFurnace International and Michael Lubbehusen from Primary Engineering
- Program Tasks and Responsibilities are Listed Below

Program Tasks	Aschliman	Lubbehusen	Huber
Coordination	X		
System Design		X	Χ
System Construction		X	
System Operation	X		
System Analysis			X
Education	X		
System Improvement	X	X	X
Marketing	X	X	X

Project Management/Coordination

Key Project Management Tasks Include:

Biweekly design meetings Completed

Biweekly construction meetings
 May – December 2010

Monthly data review meetings
 May 2010 – September 2014

Quarterly project review meetings
 Begin March 2011

 Monthly Data Summary Uploaded to National Geothermal Data System Beginning January 2011

Future Directions

- Deployment Strategy and Deployment Needs
 - Monitor the Completion of Construction Milestones with Aggressive Schedule: May – August, 2010
 - Continue to Develop Strategy to Collect, Analyze, and Summarize Geothermal System Data
 - Continue Development of CO₂ Water-to-Water Heat Pump
 - Integrate Geothermal System Operation and Data Analysis into Energy Engineering Curriculum
 - Begin Marketing Discussions

Summary

Indiana Tech Pioneering Heat Pump Project

- Phase 1--Geothermal System Design is Completed
- Phase 2 & Phase 3--Tasks, Schedules, and Budgets are Planned
- Management Team is Leading the Project
- Problems are Addressed as They Develop
- Project Milestones are Completed on Schedule
- Construction is Scheduled for 2010