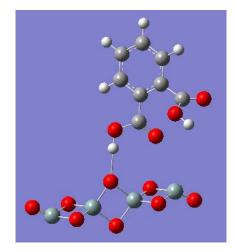


Energy Efficiency & Renewable Energy

Novel Multidimensional Tracers for Geothermal Inter-Well Diagnostics

Project Officer: John Ma Total Project Funding: \$2,300,000 April 23, 2013

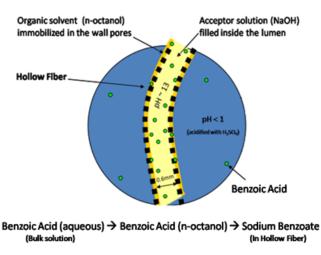
This presentation does not contain any proprietary confidential, or otherwise restricted information.


Principal Investigator : Yongchun Tang Presenter: John Ma Power Environmental Energy Research Institute

DE-EE0003032

Energy Efficiency & Renewable Energy

Objective: Develop a matrix of the smart geothermal tracer and its interpretation tools leading to information beyond well-to-well connectivity

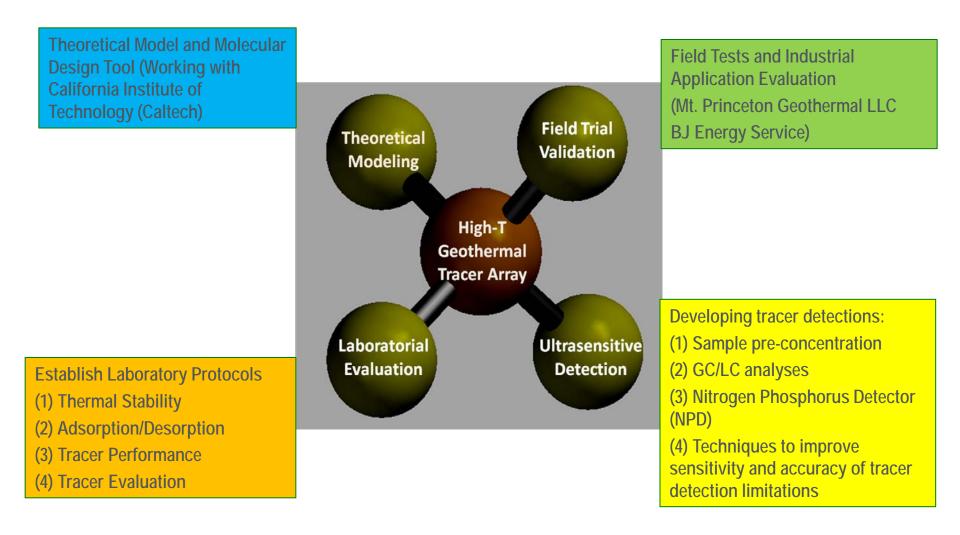

Molecular modeling techniques: understanding the tracer-surface interactions

 Fracture Spacing (b)
 Porosity (φ)

 R
 Porosity (φ)

 R
 Surface Area (A_e)

Interpretation development for subsurface characterization


Advanced sample pre-treatment technique for high resolution detection (10⁻¹² gram per mL)

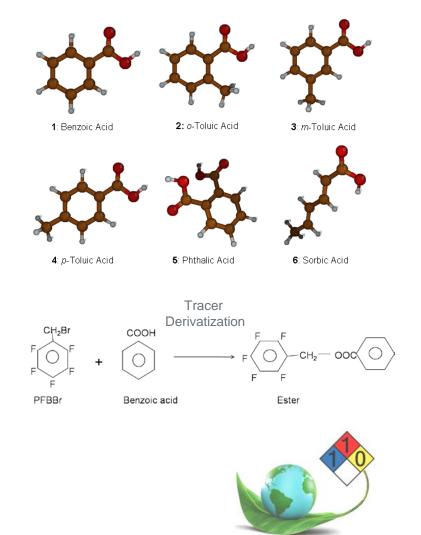
Anticipated Impacts: The integrated multiple tracer (smart tracer) and its interpretation system could have significant impacts on diagnostics of subsurface structures of geothermal reservoirs.

Scientific/Technical Approach

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

U.S. DEPARTMENT OF

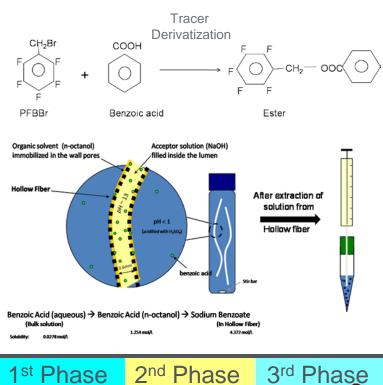

Energy Efficiency & Renewable Energy

Original Planned Milestone/ Technical Accomplishment	Actual Milestone/Technical Accomplishment	Date Completed
Milestone 1: Completion of methodology developments and data collections	(1) A class of carboxylic tracers(2) Enhancing the tracer detection limit up to 1000x	July. 2010
Milestone 2: Identification of several sets of tracer candidates and data collection from Long-slim tube experiments	 Models for predictions of reserve characters Potential to reduce tracer amounts for cost and environmental benefits 	Sept, 2011
Milestone 3: Completion of field test and development of multidimensional tracer interpretation system	 Model Validation from field test Evaluation of smart tracer application potentials 	March, 2013

Energy Efficiency & Renewable Energy

Carboxylic compounds as Multi-dimension Tracers

- Selection with structural variation
 → properties variation
 - Flow properties
 - Surface adsorption-desorption
 - Thermal degradation
- Tracer-matrix interaction → site characterization
 - Swept pore volume; surface area; fracture spacing ... etc
 - Matrix composition
 - Temperature profile
- High sensitivity detection by GC-ECD through derivatization
- Low toxicity → environmental friendly


U.S. DEPARTMENT OF

ENERGY

ENERGY Energy Efficiency & Renewable Energy

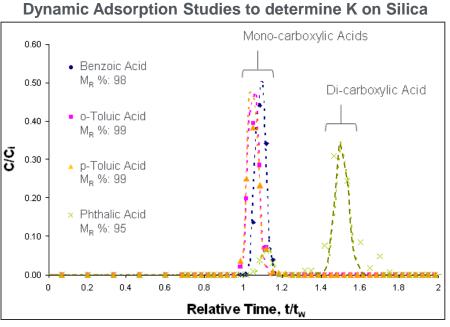
Detection Limit Improvement

- Derivatization technique: Carboxylic acids react with selective alcohol to form ester with high sensitivity detection by GC-ECD
- Advanced pre-concentration procedure development: Hollow-Fiber Liquid-Liquid Micro-Extraction (HF-LLME) based method to increase tracer detection limit up to 1000 times
 - 1st phase, the acidified raw water sample (bulk solution) outside hollow fiber;
 - 2nd phase, organic solvent soaked within the wall of the hollow fiber as transition phase for migration;
 - 3rd phase, basic acceptor solution (pH ~13) inside the hollow fiber

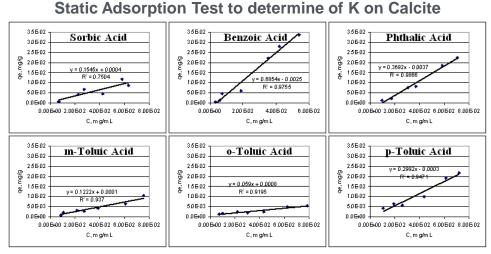
Organic Solvent Phase

(at hollow fiber wall)

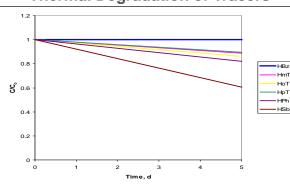
Raw Water Sample


(outside hollow fiber)

Basic Acceptor Phase


(inside hollow fiber)

U.S. DEPARTMENT OF


Laboratory Calibration

	<i>p</i> -Toluic Acid	<i>o</i> -Toluic Acid	<i>m</i> -Toluic Acid	Benzoic Acid	Sorbic Acid	Phthalic Acid
K, mL/g	0.006	0.006	0.007	0.014	0.016	0.081
K _a x10 ⁶ , m	0.372	0.397	0.459	0.833	0.968	5.027

benzoic > phthalic > p-toluic > sorbic > m-toluic > o-toluic

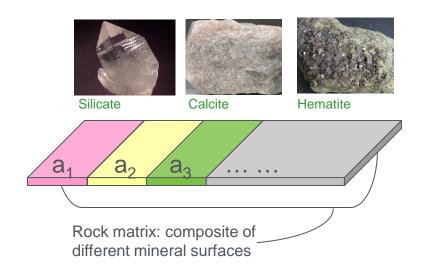
Thermal Degradation of Tracers

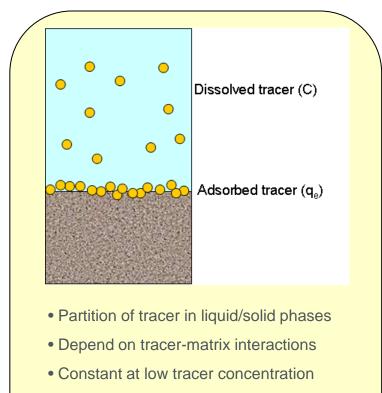
Degradation at 250°C


7 | US DOE Geothermal Office

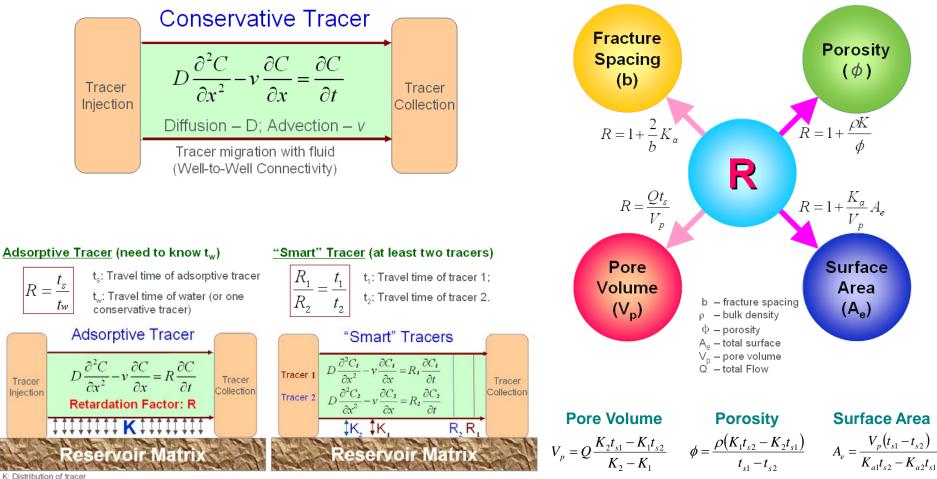
U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy


Tracer-Matrix Interaction Mechanism


Fundamental understandings of tracer-matrix interactions

Weak Tracer-Matrix Interaction Strong Tracer-Matrix Interaction (H---O bond: Before Deprotonation) (O---Si bond: After Deprotonation)



- Different K_s for different tracers
- Determined from static or calibrated tests

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Interpretation Development

in fluid and matrix

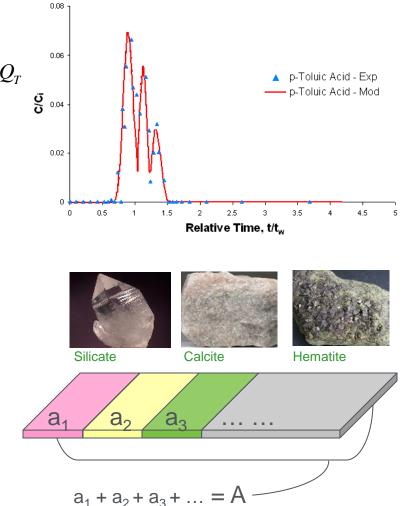
9 | US DOE Geothermal Office

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Interpretation Expansion

Multiple-Path Tracer Envelope

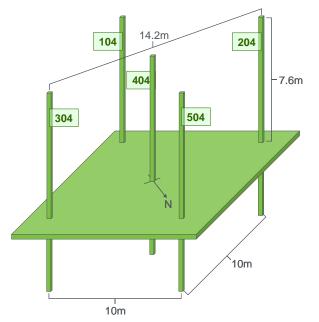

 $C(x,t) = [Q_1C_1(x,t) + Q_2C_2(x,t) + Q_3C_3(x,t) + \dots]/Q_T$

- Differentiate into several path-groups
- Same model for each path
- Specific paths' characterization

Surface Characteristics

 $K_{obs} = (a_1 K_1 + a_2 K_2 + a_3 K_3 + \dots) / A$

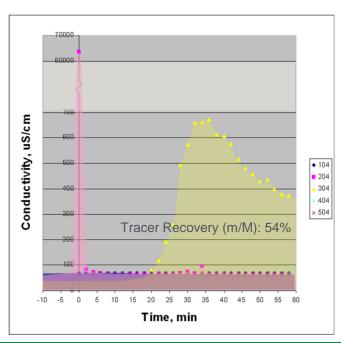
- Adsorption studies on surface with different minerals calcite
- Adsorption strength on calcite: benzoic > phthalic > p-toluic > sorbic > m-toluic > o-toluic
- Estimate rock surface composition

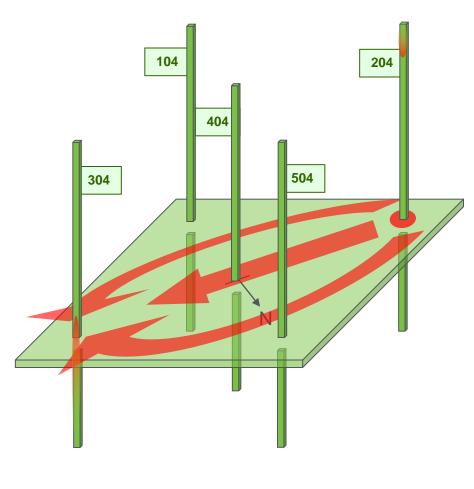

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Field Validation: Altona Flat Rock at Plattsburgh, NY

- Potsdam sandstone: nearly pure quartz
- Fractures with transmissivity of 5m²/day
- Mean aperture (b) ~ 0.45mm from literature





Energy Efficiency & Renewable Energy

Field Test: Inorganic (Conservative) Tracer

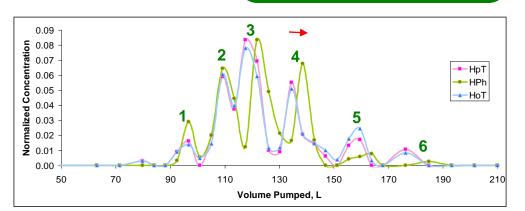
- Ionic tracers (NaCl, LiBr, etc)
- High concentration (>10000ppm)
- Data-logger system: detect wells' conductivity variation
- Wells' connectivity; breakthrough
- Pore volume swept: 0.12m³

U.S. DEPARTMENT OF

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

 $V_p = Q \frac{K_2 t_{s1} - K_1 t_{s2}}{K_2 - K_1}$


 $A_{e} = \frac{V_{p}(t_{s1} - t_{s2})}{K_{a1}t_{s2} - K_{a2}t_{s1}}$

 $b = \frac{2(K_{a1}t_{s2} - K_{a2}t_{s1})}{t_{s1} - t_{s2}}$

Field Test: Carboxylic Tracers

- Low concentration (<1000ppm)
- Insignificant conductivity variation
- Breakthrough pattern \rightarrow multiple paths
- Tracer-matrix interaction \rightarrow Path characteristics
- Swept pore volume (total) match result from conservative tracer
- Fracture aperture (b) match literature's value

Path Group	V, L	A _e , m ²	b, mm
1	5.65	15.03	0.38
2	30.88	24.77	1.27
3	37.14	337.39	0.11
4	30.75	98.18	0.33
5	10.84	30.40	0.36
6	5.30	54.58	0.10
Total swept volu	me = 0.12m ³	Average b	= 0.42mm

Mandatory Summary Slide

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Smart Tracer Selection

Thermal stability Solubility Structural variety Delectability Environmental friendly Field Applicability

Analytic Protocol

Esterification reaction HF-LLME pre-concentration GC/ECD/NPD analysis Molecular modeling

Major Accomplishments

- (1) A class of Carboxylic tracers
- (2) Enhancing the tracer detection limit up to 1000x

Interpretation Model

Tracer-matrix Interaction Adsorptive tracers Retardation for differential tracers Distribution for matrix characters Multiple-Paths

Laboratory Validation

Static adsorption tests Column filtration studies Slim-tube dynamic tests

Major Accomplishments

- (1) Theoretical models to predict reserve characters (porosity, fracturing spacing, surface area, heterogeneity etc)
- (2) Potential to reduce tracer amounts for cost and environmental benefits

Field Tests

Quartzose sandstone matrix Inorganic tracer Smart tracer

Model Improvement

Rock surfaces characters Flow characters Thermal Degradation

Major Accomplishments

- (1) Model Validation from field test
- (2) Engineering and economic assessment of smart tracer applications

The current project has officially completed. Continue developments of "smart" tracers as diagnostic tools for the geothermal resources as well as other unconventional energy resources will be pursued. Suggested directions of the further developments are discussed below:

Milestone or Go/No-Go	Status & Expected Completion Date
Continuous development and evaluation of new "smart" tracer compounds for subsurface diagnostic tools	N/A
Further development of basics for the interaction of the "smart" tracer with different surface structures for accurate prediction of subsurface information	N/A
Conduct long-term field validation and applications of "smart" tracer for geothermal resource system	N/A
Exploring applicability of the developing "smart" tracer system for other geological systems (shale, tight sand reservoir etc.)	N/A

Project Management

Title Novel Multidimensional Tracers for Geothermal Inter-Wall Diagnostics

Awardees Lead Organization: Power Energy Environmental Research (PEER) Institute

Partners: California Institute of Technology Mt. Princeton Geothermal LLC,

BJ Energy Service Company

- Academics Materials and process Simulation Center (MSC) California Institute of Technology (Caltech) Co-PI: William A. Goddard III
- Industries Mt. Princeton Geothermal LLC co-PI: Fred Handerson

Industrial Partner BJ Energy Services

	Planned Planned Start Date End Date		Actual Start Da		Current End Date	
01/29/20	01/29/2010		04/29/20	10	03/31/2013	
Federal Share	Cost Shar	e Planned Expenses to Date	Actual Expenses to Date	Value of Work Completed to Date	Funding needed to Complete Work	
\$1,840,000	\$460,000	\$2,300,000	\$2,300,000	100%	0	