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Relevance/Impact of Research 

Objectives: The thrust of this project is to develop cost-effective multifunctional 

corrosion-resistant foamed cement composites for carbon steel-based 

casings in EGS wells, to characterize their properties, and to transfer 

developed technology to cost-sharing industrial partners.  

 

Impact:  When a field-applicable corrosion-resistant foamed well cement 

possessing all required properties is formulated, it will provide the following 

five bottom-line benefits for EGS wellbore integrities:  

 

1. Extension of the carbon steel-based casing’s lifecycle;  

2. Reduction of capital investment instead of using very expensive corrosion-

resistant titanium and zirconium alloys, stainless steel or clad materials;  

3. Decrease in well operation and maintenance (O&M) costs; 

4. Reduction of substantial expenditures for abandoning, re-drilling, re-

cementing, reconstructing or repairing wells brought about by the failure of 

well cement;   

5. Cost-effective cements will reduce some capital investment.   
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Scientific/Technical Approach 

 The field applicable multifunctional cements will be formulated to meet 

the following thirteen material criteria:  

 1) Slurry density of foamed cement, < 1.3 g/cm3;  

 2) Maintenance of pumpability for at least 3 hours; 

 3) Thermal and hydrothermal stability >300C  

 4) Corrosion rate of carbon steel casing < 70 milli-inch/year;  

 5) Compressive strength, > 1000 psi after five superheating-cooling 

cycles (one cycle: 500C heat for 24 hrs and 25C water-quenching for 

4 hrs) as thermal shock resistance test;  

 6) Water permeability, < 1 x 10 -4 Darcy;  

 7) Bond strength to steel casing and granite rock, > 30 psi;  

 8) Resistance to CO2-induced mild acid (pH ~ 5.0) at 300C, < 5 wt% 

loss after 30 days exposure;  

 9) Fracture toughness, > 0.006 MN/m3/2 at 300C, 24 hour-curing time;  

 10) No shrinkage;   

 12) Thermal conductivity <  0.5 W/m.K;   

 13) Total raw material cost < $0.20/lb. 
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Accomplishments, Results and Progress 

 

 Original Planned Milestone/ Technical 

Accomplishment 

Actual Milestone/Technical Accomplishment 

 

Date Completed 

 

Task 1. Develop thermal shock-resistant 

cements 

Completed.  

S. Gill, T. Pyatina, and T. Sugama “Thermal 

shock-resistant cement,” GRC Transactions, 

36 (2012) 445-451. 

2012 GRC Best Presentation Award 

March 2012 

Task 2. Develop formulation of air-foamed 

light weight cements 

Completed. 

 

Jun 2012 

Task 3. Develop corrosion inhibitors for 

foamed cement 

Completed. 

T. Sugama, S. Gill, T. Pyatina, R. Keese, A. 

Khan, and D. Bour “Corrosion-resistant 

foamed cements for carbon steel,” BNL 

informal report, January (2013). 

 

December 2012 

Task 4. Deliver interim report to DOE Completed. Two reports December 2012 

 

Task 5. Complete technology transfer to 

cost-sharing industrial partners 

Completed. Schlumberger, Baker Hughes, and 

Geodynamics 

December 2012 
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Accomplishments, Results and Progress 

Synthesis of Thermal Shock-resistant Cement (TSRC)  

 Hydrothermal synthesis of new cement consists of  three cementitious 

phases, hydro-garnet, hydro-ceramic, and hydro-Al oxide, from starting 

materials including refractory calcium aluminate cement (RC), Class F 

fly ash, and sodium silicate 
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Accomplishments, Results and Progress 

 Thermal shock-resistance test (one cycle: 500C annealing for 

24 hrs + 25C water-quenching for 5 hr) 

 

Heat-water quenching cycles
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Accomplishments, Results and Progress 

Phase compositions formed in TSRC after 5 cycle testing 
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Accomplishments, Results and Progress 

Phase compositions formed in Class G/quartz flour system after 1 cycle 
testing 
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Accomplishments, Results and Progress 

 Cool water-thermal stress cycle test for cement sheaths (One cycle: 350C 

heated-25C cool water passing in tube) 
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Accomplishments, Results and Progress 

Corrosion-resistant foamed TSRC for carbon steel  

 

CH3

Ca
2+

  + 2 OH
-

COOH or COOR

CH3

COO
-

Ca
2+ -

OOC

CH3

-[-CH2-C-]-n2 +

-[-CH2-C-]-n -[-C-CH2-]-n

R: C2H5 or C4H9

+ 2H2O + ROH

(in cement) >150
o
C

High-temperature Corrosion Inhibitor:  Acrylic polymer (AP)  
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Accomplishments, Results and Progress 

FA content, wt%
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Foaming Agent (FA): Cocamidopropyl dimethylamine oxide  
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Accomplishments, Results and Progress 
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Future Directions 

 

 

 

 

 

Milestone or Go/No-Go Status & Expected 

Completion Date 

Task 1. Complete thermal stress resistant test for 300C-cured 

foamed TSRC       

     

Apri.2013 

 

Task 2. Develop high temperature-stable corrosion inhibitors 

300C      

      

Jun. 2013 

Task 3. Develop toughness enhancing additives Aug.2013 

Task 4. Develop setting control additives 

 

Nov.2013 

 

Go/no-go decision 

Task 5. Deliver interim report covering all information 

obtained in FY2013 to DOE and prepare peer-reviewed 

journal article 

Dec.2013 

Task.6 Complete technology transfer to geothermal industry Dec.2013 
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Mandatory Summary Slide 

 Thermal shock-resistant cement (TSRC) and 200C-withstanding corrosion 

inhibitor suitable for foamed TSRC were developed in FY 2012.    

FY2012 (Dec. 2011-

May 2012)  

FY2012 (Jun. 2012- Jan. 

2013) 

Target/Milestone Complete annealing-

water quenching test.  

•Complete density and 

electrochemical corrosion tests.  

•Meeting with industrial partners 

to evaluate its technical 

feasibility and to address future 

R&D direction.  

 

Results Formulated thermal 

shock-resistant 

cement. 

•Developed two specific 

additives, foaming agent and 

corrosion inhibitor suitable for 

TSRC. 

•Report covering all data was 

prepared and set to DOE and 

industrial partners for review.  
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Timeline: 

 

 

 

 

 

 

Budget: 

 

 

 
 

 

 

Project Management 

Federal Share Cost Share Planned 

Expenses to 

Date 

Actual 

Expenses to 

Date 

Value of  

Work Completed 

to Date 

Funding  

needed to  

Complete Work 

$300 K   0 $300 K   $250 K  $300 K  0 

 Planned   

Start Date 

Planned 

 End Date 

Actual  

Start Date 

Current  

End Date 

December 2011  December 2012  December 2011   December 2012*  

* Some work ongoing with carry forward funds 


