
Geothermal Technologies Office 2013 Peer Review

Energy Efficiency & Renewable Energy

Microstructure developed in conventional foamed (left) and corrosionresistant foamed cements (right)

Multifunctional Corrosion-resistant Foamed Well Cement Composites Project Officer: Dan King/Greg Stillman Total budget: \$300 K April 24, 2013

This presentation does not contain any proprietary confidential, or otherwise restricted information.

Principal Investigator: Dr. Toshifumi Sugama Co-Pl; Dr. Tatiana Pyatina

Presenter Name: Dr. Toshifumi Sugama

Objectives: The thrust of this project is to develop cost-effective multifunctional corrosion-resistant foamed cement composites for carbon steel-based casings in EGS wells, to characterize their properties, and to transfer developed technology to cost-sharing industrial partners.

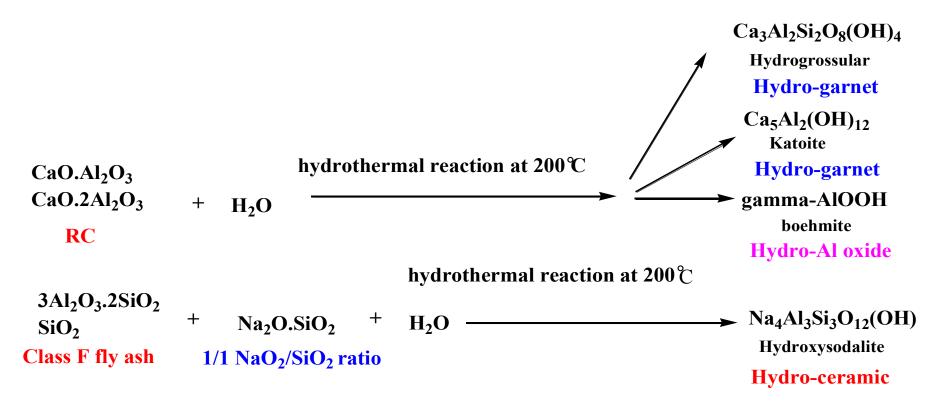
Impact: When a field-applicable corrosion-resistant foamed well cement possessing all required properties is formulated, it will provide the following five bottom-line benefits for EGS wellbore integrities:

- 1. Extension of the carbon steel-based casing's lifecycle;
- 2. Reduction of capital investment instead of using very expensive corrosionresistant titanium and zirconium alloys, stainless steel or clad materials;
- 3. Decrease in well operation and maintenance (O&M) costs;
- 4. Reduction of substantial expenditures for abandoning, re-drilling, recementing, reconstructing or repairing wells brought about by the failure of well cement;
- 5. Cost-effective cements will reduce some capital investment.

The field applicable multifunctional cements will be formulated to meet the following thirteen material criteria:

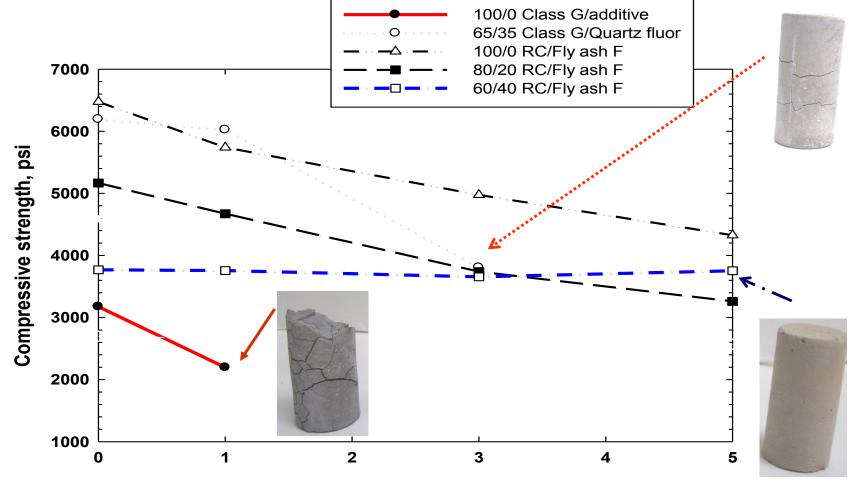
- 1) Slurry density of foamed cement, < 1.3 g/cm³;
- 2) Maintenance of pumpability for at least 3 hours;
- 3) Thermal and hydrothermal stability >300°C
- 4) Corrosion rate of carbon steel casing < 70 milli-inch/year;
- 5) Compressive strength, > 1000 psi after five superheating-cooling cycles (one cycle: 500°C heat for 24 hrs and 25°C water-quenching for 4 hrs) as thermal shock resistance test;
- 6) Water permeability, < 1 x 10 ⁻⁴ Darcy;
- 7) Bond strength to steel casing and granite rock, > 30 psi;
- 8) Resistance to CO_2 -induced mild acid (pH ~ 5.0) at 300°C, < 5 wt% loss after 30 days exposure;
- 9) Fracture toughness, > 0.006 MN/m^{3/2} at 300°C, 24 hour-curing time;
- 10) No shrinkage;
- 12) Thermal conductivity < 0.5 W/m.K;
- 13) Total raw material cost < \$0.20/lb.

Energy Efficiency & Renewable Energy

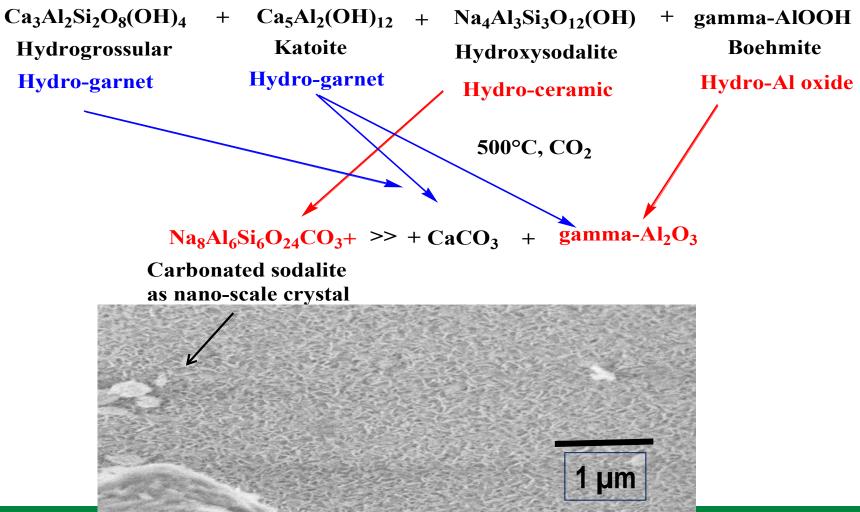

Original Planned Milestone/ Technical Accomplishment	Actual Milestone/Technical Accomplishment	Date Completed
Task 1. Develop thermal shock-resistant cements	Completed. S. Gill, T. Pyatina, and T. Sugama "Thermal shock-resistant cement," GRC Transactions, 36 (2012) 445-451. 2012 GRC Best Presentation Award	March 2012
Task 2. Develop formulation of air-foamed light weight cements	Completed.	Jun 2012
Task 3. Develop corrosion inhibitors for foamed cement	Completed. T. Sugama, S. Gill, T. Pyatina, R. Keese, A. Khan, and D. Bour "Corrosion-resistant foamed cements for carbon steel," BNL informal report, January (2013).	December 2012
Task 4. Deliver interim report to DOE	Completed. Two reports	December 2012
Task 5. Complete technology transfer to cost-sharing industrial partners	Completed. Schlumberger, Baker Hughes, and Geodynamics	December 2012

Energy Efficiency & Renewable Energy

Synthesis of Thermal Shock-resistant Cement (TSRC)


Hydrothermal synthesis of new cement consists of three cementitious phases, *hydro-garnet, hydro-ceramic*, and *hydro-Al oxide*, from starting materials including <u>refractory calcium aluminate cement (RC)</u>, <u>Class F</u> <u>fly ash</u>, and <u>sodium silicate</u>

Energy Efficiency & Renewable Energy


Thermal shock-resistance test (one cycle: 500°C annealing for 24 hrs + 25°C water-quenching for 5 hr)

Heat-water quenching cycles

Phase compositions formed in TSRC after 5 cycle testing

Energy Efficiency & Renewable Energy

Phase compositions formed in Class G/quartz flour system after 1 cycle testing

 $\begin{array}{rcl} Ca_{5}(OH)_{2}Si_{6}O_{16}.4H_{2}O &+ & CaO.SiO_{2}.H_{2}O &+ & Ca(OH)_{2} \\ \hline 1.1 \ nm \ tobermorite & Portlandite \\ & & & \\ & &$

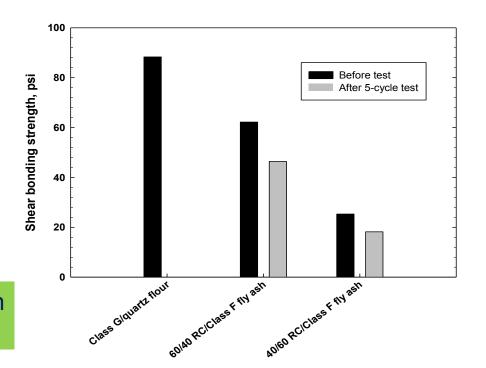
Phase transformation of portlandite in hydrated Class G cement under dry and wet conditions

 $\begin{array}{ccc} CaCO_3 \\ 500^{\circ}C, CO_2 & + & water \\ Ca(OH)_2 & \longrightarrow & CaO & \longrightarrow & Ca(OH)_2 \end{array}$

in-situ volumetric expansion of cement by reformation of portlandite

Energy Efficiency & Renewable Energy

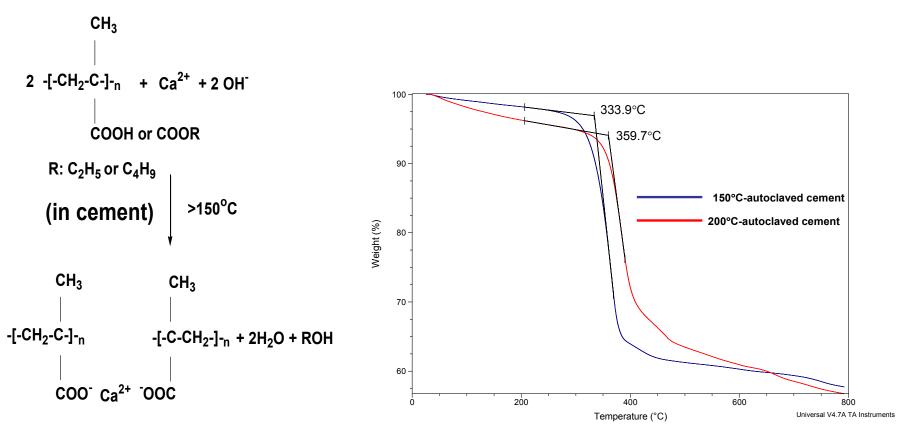
Cool water-thermal stress cycle test for cement sheaths (One cycle: 350°C heated-25°C cool water passing in tube)


~25°C water

Class G/quartz flour New cement sheath cement sheath after 1 cvcle

after 5 cycles

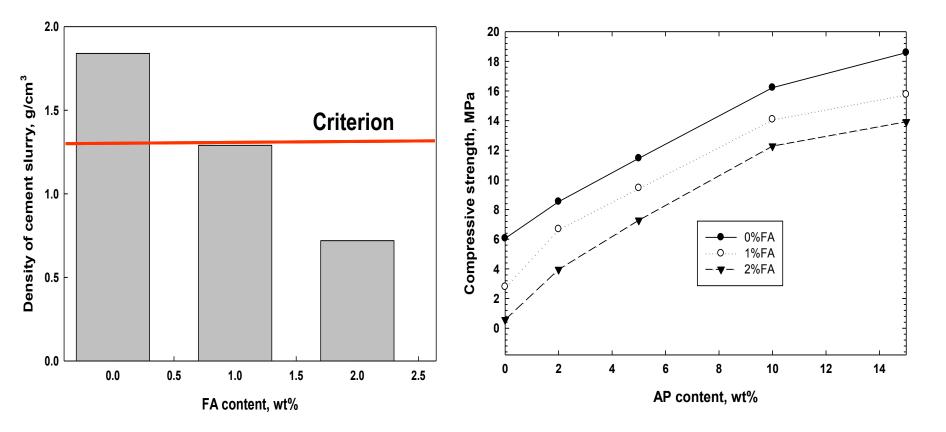
Shear bonding strength at interfaces between cement and casing before and after 5 cycle testing



Energy Efficiency & <u>Ren</u>ewable Energy

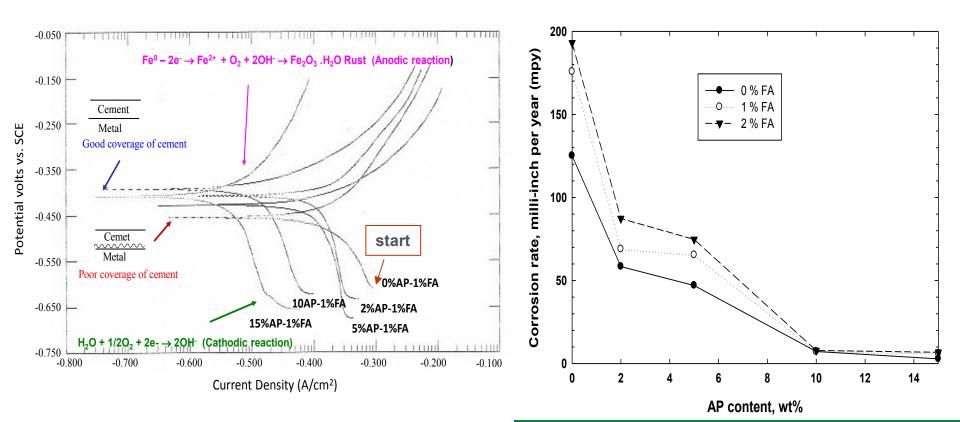
Corrosion-resistant foamed TSRC for carbon steel

High-temperature Corrosion Inhibitor: Acrylic polymer (AP)


Thermal stability of Ca-complex AP formed in cement

Slurry density of foamed cements and compressive strength of APmodified and non-modified foamed cements after autoclaving at 200°C

Foaming Agent (FA): Cocamidopropyl dimethylamine oxide


Accomplishments, Results and Progress

Energy Efficiency & Renewable Energy

DC polarization diagrams for carbon steel panels coated with unmodified and APmodified foamed cements after autoclaving at 200°C

Corrosion mitigation of carbon steel by AP-modified foamed cements

Milestone or Go/No-Go	Status & Expected Completion Date
Task 1. Complete thermal stress resistant test for 300°C-cured foamed TSRC	Apri.2013
Task 2. Develop high temperature-stable corrosion inhibitors ≥300°C	Jun. 2013
Task 3. Develop toughness enhancing additives	Aug.2013
Task 4. Develop setting control additives	Nov.2013
Go/no-go decision	
Task 5. Deliver interim report covering all information obtained in FY2013 to DOE and prepare peer-reviewed journal article	Dec.2013
Task.6 Complete technology transfer to geothermal industry	Dec.2013

Thermal shock-resistant cement (TSRC) and 200°C-withstanding corrosion inhibitor suitable for foamed TSRC were developed in FY 2012.

	FY2012 (Dec. 2011- May 2012)	FY2012 (Jun. 2012- Jan. 2013)
Target/Milestone	Complete annealing- water quenching test.	 Complete density and electrochemical corrosion tests. Meeting with industrial partners to evaluate its technical feasibility and to address future R&D direction.
Results	Formulated thermal shock-resistant cement.	 Developed two specific additives, foaming agent and corrosion inhibitor suitable for TSRC. Report covering all data was prepared and set to DOE and industrial partners for review.

Project Management

Timeline:	Planned Start Date	Planned End Date	Actual Start Date	Current End Date
	December 2011	December 2012	December 2011	December 2012*

Budget:	Federal Share	Cost Share	Planned Expenses to Date	Actual Expenses to Date	Value of Work Completed to Date	Funding needed to Complete Work
	\$300 K	0	\$300 K	\$250 K	\$300 K	0

* Some work ongoing with carry forward funds