

Finite Volume Based Computer Program for Ground Source Heat Pump Systems

May18, 2010

This presentation does not contain any proprietary confidential, or otherwise restricted information.

Principal Investigator: Jim Menart Presenter Name: Jim Menart Organization: Wright State University

Track Name: GSHP Demonstration Projects

- Timeline
 - Project start date: April 1, 2010 (January 29, 2010)
 - Project end date: March 31, 2011 (February 28, 2011)
 - Percent complete: 10%
- Budget
 - Total project funding: \$290,749
 - DOE share: \$232,596
 - Awardee share: \$58,153
 - Funding received in FY09: \$0
 - Funding received for FY10: \$0 (nothing has been billed yet)

Mandatory Overview Slide

Energy Efficiency & Renewable Energy

Barriers

- The only barrier that can be seen is computational time
 - Computer computational times for long simulated geothermal loop
 operation times can be long
 - This will not interfere with running shorter geothermal loop operation times quickly
 - This will make the program less desirable commercially

Partners

- Wright State is the only Institution involved on project
- A number of local companies/organizations have shown interest in this work
 - Emerson Climate Technologies
 - Heapy Engineering
 - Weibull Energy Systems works with TRANE
 - Haley & Aldrich
 - Melink Coorporation
 - KLH Engineers
 - City of Dayton

Overall Objective

Create a new modeling "decision" tool that will enable ground source heat pump (GSHP) designers and customers to make better design and purchasing decisions.

Specific Objectives

- Develop a user friendly computational tool for sizing geothermal ground loop geothermal systems
 - Horizontal loops
 - Veritical loops
 - Open loops
- Use a more detailed analysis than is currently used in commercial codes
 - Do not use g-factor approach
- Provide length and spacing information for the ground loop
 - Present commercial codes do not provide spacing information
 - Spacing is critical for optimal system performance
- Provide plots of temperature profiles in the ground as a function of time and position

Specific Objectives Continued

- Provide costing information on
 - Designed geothermal system
 - Gas heating with vapor-compression air-conditioning system
 - Oil heating with vapor-compression air-conditioning system
 - Propane heating with vapor-compression air-conditioning system
 - Air-to-air heat pump system
- Provide payback period of geothermal system compared to other four systems

Desired Long Term Impact of this Research

- More efficient geothermal systems
- More economical geothermal systems
- Increased use of geothermal systems
- While this is a design tool, it is hoped that this program will be used in a research mode to find other ways to do ground loops

Scientific/Technical Approach

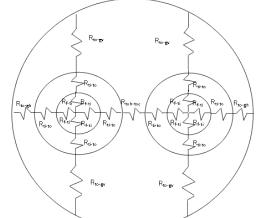
heat transfer in the earth

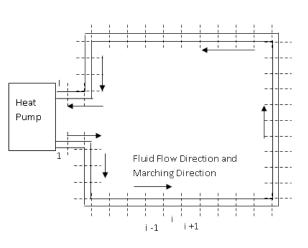
8 | US DOE Geothermal Program

 Use thermal resistive technique to model heat transfer in liquid, tubes, and any grouting used

 $T_{Li}^{p+1} = T_{s.\infty}$

Use finite volume method to model unsteady


 $\frac{T_{j,i}^p - T_{1,i}^{p+1}}{R_{t+1,c-1}} + k_s 2\pi r_{j+1/2} \Delta x_i \frac{T_{j+1,i}^{p+1} - T_{j,i}^{p+1}}{r_{i+1} - r_i} = \rho_s C_s \pi \left(r_{j+1/2}^2 - r_{j-1/2}^2 \right) \Delta x_i \frac{T_{j,i}^{p+1} - T_{j,i}^p}{\Delta t^{p+1/2}}$


 $= \rho_s C_s \pi \left(r_{j+1/2}^2 - r_{j-1/2}^2 \right) \Delta x_i \frac{T_{j,i}^{p+1} - T_{j,i}^p}{\Lambda + p + 1/2}$

 $k_{s}2\pi r_{j+1/2}\Delta x_{i}\frac{T_{j+1,i}^{p+1}-T_{j,i}^{p+1}}{r_{j+1}-r_{j}}-k_{s}2\pi r_{j-1/2}\Delta x_{i}\frac{T_{j,i}^{p+1}-T_{j-1,i}^{p+1}}{r_{j}-r_{j-1}}$

- Use axial marching solution to model changes in the flow direction
- Use heat pump performance curves to model effect of heat pump on system
 - Coupled with ground loop analysis

Spatial Marching Technique

ENERGY | Energy Efficiency & Renewable Energy

Scientific/Technical Approach

- Estimate costs of gas, oil, and propane systems coupled to vapor compression refrigeration system
 - Initial costs of equipment
 - Operating costs
 - Costing will be based on present day prices with option to enter other prices
- Estimate costs of air-to-air heat pump system
 - Initial costs of equipment
 - Operating costs
 - Costing will be based on present day prices with option to input other prices
- Do payback period calculation
 - Account for time value of money
- Milestones will be presented with timeline graph

- (see slide 13)

- Program results will be tested against published experimental results
- Program results will be tested against other model results
- Perform some survey results to judge whether program is working correctly
- Different parts of program will be tested as they are developed to see that they are performing properly
- Will have a GUI interface on the program to make it user friendly

- I have a research professor and graduate student on board
 - Programming work has begun
- We are working on the finite difference portion of computer code
 - Expect to have this done by end of June
 - This is the heart of the computer model
- No data to report as of this time
- PI (Dr. Menart) and Research Scientist (Dr. Shiva Prasad) have over 40 years of computer programming experience in CFD and heat transfer
 - Dr. Menart has developed a number of large scale computational programs

- Dr. Menart is leading a group of a Research Scientist and a graduate student
 - A second graduate student will be on board this summer
 - The research scientist is helping guide the work with the graduate student
 - A number of industries have shown interest in the project as mentioned earlier
- Resources for this project are essentially used for salaries
- Next slide shows the time line for the project

Project Management/Coordination

Energy Efficiency & Renewable Energy

	Month											
Project Task	1	2	3	4	5	6	7	8	9	10	11	12
PHASE I – COMPUTER PROGRAM DEVELOPMENT												
Task 1.0 – Program Inner												
Region Loop Model												
Task 2.0 - Program Outer												
Region Loop Model												
Task 3.0 - Program Axial												
Marching Solution												
Task 4.0 - Program Time												
Marching Solution												
Task 5.0 - Program Heat												
Pump Model												
Task 6.0 - Program Costs												
Task 7.0 - Program GUI												
PHASE II - COMPUTER PROGRAM TESTING												
Task 8.0 – Test Computer												
Program to Verify												
Accuracy												
PHASE III – PARAMETER SURVEY												
Task 9.0 – Perform												
Survey Runs												
Task 10.0 Project												
Management and												
Reporting												
Recruit Graduate Students												
Attend conferences to												
present results												
Develop web site												
Write final technical												
report												

- When finished this program will be made available on the web as free software for a period of three years
- After three years the software will be available for a cost
- This project is scheduled to be done in one year
- After this project we would like to write a scientific version of this program that models the geothermal system in full 3-D finite volume form

- Will not worry about computational time in this version

- Better commercial computer codes are required in the geothermal ground loop industry.
- Present commercial models seem to focus on the length of the ground loop and not the spacing
 - Our program will give the designer spacing information
- The program being developed will
 - Be based on fundamental heat transfer principles and the fundamental solution technique called the finite volume numerical model
 - Cost comparisons will be done
 - Detailed temperature profiles will be computed and presented
- Project is on schedule

Supplemental Slides

U.S. DEPARTMENT OF

- DOE criteria for Ground Source Heat Pumps
 - Reduce levelized cost of electricity (\$/ton) by 30% by 2016
- We do believe that our program will lower the costs of geothermal systems.
 - A more accurate model that does not over or under size the geothermal system will have the effect of lowering costs
- We also hope that this program will be used to improve current geothermal designs
- Better computer models that can be used commercially are needed