

Development of a Hydrothermal Spallation Drilling System for EGS

May 19, 2010

Jared M. Potter, President Potter Drilling, Inc.

Component R&D

PD GTP Project Overview

Potter Drilling's GTP project:

Timeline

- Initiated October 2009
- Completion Date: May 2012
- 20% complete to date

Budget

- \$7.5 million total project budget with \$5 million from the DOE
- \$3.4M in project funding in FY 2010

- Barriers:

- Primary goal: improve Engineered Geothermal Systems (EGS) well construction capability
- Secondary goals: improve site characterization & EGS reservoir creation

- Partners:

 Professor Jefferson Tester, Cornell University: \$600k for laboratory studies of heating technology and mineral dissolution/precipitation

Relevance/Impact of Research

Project Objective:

 Build and demonstrate a working prototype hydrothermal spallation drilling unit that will accelerate commercial deployment of EGS as a domestic energy resource

Why is this technology innovative?

- Greater ROP in hard rock: 30 ft/hr vs. <5 ft/hr using conventional methods
- Non contact: reduced bit wear and tripping
- No weight on bit: better control of trajectory
- Potential for greater well bore stability: fewer casing intervals
- Not depth limited: potential to drill to 30,000 feet with little or no performance degradation

Relevance/Impact of Research

This project will impact geothermal energy development by:

- Reducing the cost and timeframe for constructing EGS wells by 15-20%:
 - Improved ROP
 - Reduced tripping
 - Reduced casing and completion costs
 - Enable ultra deep drilling for universal EGS development
- Improving geothermal reservoir performance by 50 200%:
 - Capability to drill directional slim holes to access stimulated zones from the main wellbore in hydrothermal and EGS production wells
 - Thermal drilling/excavation methods to remove near wellbore impedance and skin damage
- Establishing a new site characterization technology:
 - High angle directional drilling for improved resource-fracture identification in hard rock

This Project is Stage 3 of a 4 Stage Development Approach

Stage I: Proof of Concept

- Demonstrated that hydrothermal spallation drilling works on small scale core samples
- 2. Demonstrated the process over a range of borehole pressures and stresses
- 3. Evaluated nozzle designs, operating temperatures and flow rates
- 4. Evaluated the effectiveness in a range of different rock types
- Quantified spall size and changes in rock properties
- 6. Created new heat flux and ROP models

Stage II: Scaled Lab Tests

- 1. Demonstrated that hydrothermal spallation works at low pressures (requirement for shallow surface testing)
- 2. Demonstrated that process scales to larger diameters (>4" borehole)
- 3. Developed new chemical heating system
 - All liquid
 - "Light-off" at ambient temperatures and pressures
 - Controlled, flameless, jet temperature
- 4. Demonstrated ability to clear spalls
- Continued to refine heat flux and ROP models

GTP Project Approach (Stage III):

- Task 1: Design and Fabricate Bottom Hole Assembly (BHA): Fully integrated and tested tool with advanced downhole instrumentation.
- Task 2: Coiled Tube Drill Rig and support equipment: Integrate a modified CT unit with custom hardware and software control systems.
- Task 3: Site Preparation: Prepare three test boreholes at the target field site in Raymond, CA.
- **Task 4: Field Trials**: The three stage iterative field test sequence will allow Potter Drilling to update and modify elements of the prototype based on experiences learned in the field.
- Task 5- Research on Advanced Heating Technologies: Laboratory research in conjunction with Prof. Jeff Tester at Cornell University to improve knowledge of chemical heating systems and understanding of very high temperature mineral dissolution-precipitation.
- Task 6- Project Management and Reporting: Reports and deliverables relevant to each task and milestone.

FY 2010 Milestones and Go/No Go Decisions

- Complete BHA design and fabrication with bench top testing: July, 2010
 - Flow tests at elevated temperature
 - Survival of hardware in borehole conditions
- Complete specification and assembly of drill rig and associated support systems: July, 2010
 - Proper flow of chemical reactants and coolant
 - Proper operation of CT injection system
 - Ability to monitor BHA using data acquisition control system
- Complete Field Site Preparation: July, 2010
 - Completion of 300 ft boreholes (hammer drilled and cased to spec)
 - Pressure/level tests to determine if the fluid losses/gains while drilling are acceptable.
 - Camera logging and shut in pressure decline/increase monitoring for fractures

Field Site (Raymond, CA)

Accomplishments, Expected Outcomes and Progress

Progress To Date:

- Completed hydrothermal spallation drilling system specification
- Completed modification and took delivery of coiled tubing unit
- Completed BHA component, sub-assembly, and electronics designs and initiated fabrication
- Completed field trial test site environmental reviews and approvals

Project Management/Coordination

Project Plan Summary

- Phase 1 of work to be completed by July, 2010
 - BHA and subassemblies fabricated and wet tested
 - Drill rig and surface equipment prepared
 - Field site and starter wells prepared
- Phase 2: Field tests commence in August, 2010
 - First field trial scheduled for August, 2010
 - Work with Cornell University commences
- Field Trials completed in 2011
- Project completed in May, 2012

Financial Plan Summary

- \$2.0M in resources expended on Phase 1 to date
- \$4.6 M in resources to be expended in FY 2010
- DOE ARRA resources will be completed utilized by April 2011

Project Management/Coordination

			Description		Phase 1													Phase 2														
Topic	Task	Subtask		_	2009 201																2011							2012				
Торіс	Tusk		·	N	D	J]	M	[A	M	J	J .	A S	3 () N	D	J	F	M	A	M	J	J	A	S	0	N	D	J	F N	M A	A N	VI
ļ		1.1	BHA Requirements Specification										+														+	4		-	+	_
	1.0	1.2	Design, Fab of Steam Generator Assembly			-	+	+				_	+		+											_	+	\dashv	-	+	+	-
Bottom Hole	1.0	1.3	Design, Fab of Dynamic Seal Assembly Design, Fab of Other Subassemblies				-	+					+		+												+	+	_	_	+	_
Assembly		1.4	Design, Fab of Other Subassembles Design, Fab of Instrumentation and Controls			-	+	+				_	+		+												+	+	-	+	+	_
	Milestone 1	1.5	Performance Assessment										+														-	-			+	-
	Go/No-Go 1		Go/No-Go Decision	\vdash		-	+	+					+		+												+	\dashv	+	+	+	-
	GO/NO-GO I		Go/No-Go Decision								7																		_			_
		2.1	Modification of the AmKin Drill Rig				_	Т	Т				\top		\top	Т											$\overline{}$				\top	\neg
Drill Rig and Tubing	2.0	2.1	Modification of the Coiled Tubing			_	+	+				+	+	+	+	\vdash				\dashv				\vdash		\dashv	+	\dashv	+	+	+	\dashv
		2.3	Surface Equipment								-		+	+	+			H								+	+	+	+	+	+	\dashv
	Milestone 2	2.5	Performance Assessment										+														+	_		+	+	-
	Go/No-Go 2		Go/No-Go Decision				+	+					+														+	\dashv		+	+	-
	30/110 30 2		GO/ING GO DECISION																													_
		3.1	Site Requirements					Т					Т		Т												Т				\top	
Field Site Preparation	3.0		Starter Well construction				-					_	+		+											+	+	\dashv	+	+	+	-
	Milestone 3	3.2	Performance Assessment	-									+														+	_			+	_
	Go/No-Go 3		Go/No-Go Decision	+-		-	+	+					+		+												+	+	-	+	+	_
	G0/N0-G0 3		Go/No-Go Decision																													_
Field Trials		4.1	Test Plan definition	ı									$\overline{}$		$\overline{}$	Τ															\top	\neg
	4.0	4.2	Specify Drilling Program	\vdash									+		+												+	\dashv			+	-
		4.3	Trial#1	1			+																				+	\dashv			+	-
		4.4	Trial #2										т														$^{+}$	1			+	-
			Demonstration																												\top	_
	С		Performance Assessment				\top						\top														\top	\top			\top	
	Project Closing		Project Closing Decision				\top	Т					\top															T			\top	
	, ,													_												_						_
Advanced		5.1	Chemical Heating Systems																													
Development	5.0	5.2	Downhole Mineral Kinetics																													
																																_
	6.0	6.1	Interim Report: Interim update																												\top	\neg
Project Management and Reporting			Report: BHA, Drill Rig, and Site Prep				\top																				\top	\dashv			\top	\exists
			Report: Field Trial #1 Results										\top		Г												\top	\top			\top	٦
		6.4	Reort: Field Trials #2 Results	1																								\neg			\top	٦
		6.5	Report: Advanced Development Results										\top		\top													\neg			\top	٦
			Final Report				\top						\top														\top	T				

Future Directions

Expected Project Outcome: Field proven prototype and performance data

Future Development Strategy:

- Near term: Commercialize system for hydrothermal and EGS well enhancement and field characterization
- Long term: Develop deep drilling system for EGS

• FY 2010

- Full prototype system designed and completed by July, 2010
 - BHA performance assessment milestone
 - Drill rig performance assessment milestone
 - · Site requirements milestone
- First field trial: August, 2010
- Second field trial: late 2010
- Commence laboratory research at Cornell University

FY 2011

- Analyze results of first and second field trial
- Iterative design and modification of system based on trial results
- Conduct one more field trial

Summary

- Hydrothermal spallation drilling is an innovative technology with significant performance advantages in hard rock
- Application of the technology will have a considerable impact on EGS and hydrothermal well construction, reservoir performance, and site characterization
- Potter Drilling is in Stage 3 of a 4 stage development program
- The GTP has contributed \$5M towards the field demonstration of our prototype drilling system
- We will have documented field test results within FY 2010