Geothermal Technologies Program 2010 Peer Review

Bradys EGS Project

DOE: DE-FG36-08GO18200

May 18, 2010

Peter Drakos

Ormat Nevada Inc.

Innovative Exploration Technologies

This presentation does not contain any proprietary confidential, or otherwise restricted information.

Overview

- Timeline
 - Project start date: September 2008, contract was singed on June 2009
 - Project end date: June 2012
 - percent complete: ~10%
- Budget
 - Total project funding: \$5,100,600
 - DOE share: \$3,374,430
 - Awardee share:\$1,726,179
 - funding received in FY09: \$97,152
 - funding for FY10: \$800,128
- Challenge: Coordinating other DOE funded projects focused on Bradys EGS (LANL, Hi-Q, UNR) and integrating results
- Partners: GeothermEx, Inc., GeoMechanics International, Lawrence Berkeley National Laboratory, Nevada Bureau of Mines and Geology / GFZ (Germany), Pinnacle Technologies, TerraTek, University of Nevada, Reno, University of Utah

Objectives

Project Goals:

- •Stimulate Permeability in Tight Well 15-12 and Improve Connection to Rest of the Field
- •Improve overall Productivity or Injectivity
 - Common EGS/Geothermal development goal
- •Successful stimulation yields more production and enables more power generation
- •Bradys methodologies can apply to other EGS projects "Toolbox"

Well Selection:

- Located in developed geothermal field "In Field" EGS
- High Temperature
- •Favorable rock formations amenable to hydraulic stimulation

Project Accomplishments - 1

Project Management

- Signing Subcontracts (UNR, GMI, USGS, Temple, TerraTek)
- Cooperative Research Workshop April 2010
 - DOE, GeothermEx, UNR, USGS, LBNL, LANL, NETL, Hi-Q, Bestec, GMI, Temple U., TerraTek, NBMG / GFZ
 - Presentations from each party on their plans and results to date
 - Site visit / field trip
 - Defined scientific work plan

Project Accomplishments - 2

Research

- Borehole Logging (wellbore image and other logs)
 - Existing FMS in 15-12 OH; new FMS and borehole televiewer log to be run in 15-12 ST1
- Core Recovery
 - Cores from BCH-3 organized and catalogued to enable selection for testing
- Seismic Network
 - Shallow downhole array installed with 8 3-component stations
- Conceptual Structural Model
 - Detailed geologic mapping completed (Faulds, 2004) and update underway
- Petrologic Analysis of Cuttings
 - Sample splits obtained from wells 15-12 and 26-12, in process now
- Review of Existing Geophysical Data and Seismic Reflection Survey
 - Review has enabled design of seismic survey

ENERGY Energy Efficiency & Renewable Energy

Bradys 15-12

Rationale:

- Recent Completion- 2007
- 9 5/8 inch liner to 4245 ft
- 8 1/2 inch OH to 5096 ft
- 850 feet of open hole in competent, fractured rocks with sub-commercial permeability
- temperatures exceeding 400°F
- Located adjacent to existing core hole BCH3
- Located within several hundred feet of commercially productive wells
- Located within several hundred feet of two other non-commercial wells that are open and accessible (88-11 and 26-12)
- Location within or near the Bradys
 Fault and the likely trend of maximum horizontal stress, has the potential to be connected with other Bradys wells.

ORMAT NEVADA INC., BRADY HOT SPRINGS Mudlog, Casing, Lithilogic units, Lost circulation, Drilling Fluids & Surveys Well 15-12 ST1

Brady's 15-12 Temperature & Pressure Profiles Welaco PTS Logs, Both up Passes Static April 6 and Lifting with Air at 2500 ft April 7, 2007

ENERGY Energy Efficiency & Renewable Energy

- OH reached TD on April 4, 2007
- Continued circulating on April 5th
- Static temp log on April 6th
- Air lift attempt on April 7th
- Deep temperatures are expected to be ~400°F (204°C)
- Ran FMS log on April 13th
- Plugged back to 4,331 feet for ST1
- Start ST1 on April 16th
- Drilled to 5,096 feet without significant losses
- Performed injectivity test on April
 21st
- Well has low permeability
- Injectivity Index < 1 gpm/psi

Seismic monitoring array (LBNL)

- An 8 station array capable of detecting and locating in real time MEQ events down to mag 0 or better.
- Surface stations three component 4.5hz geophones buried in the near surface.
 Installed and online.
- Downhole stations three component 8hz geophones installed at ~100'. Equipment and boreholes by mid-June.
- The data is transmitted to a central site with spread spectrum radios over an RS232/ internet compatible digital link at real time data rates with time stamped data using GPS corrected data.

Borehole Logging Methods and Analysis

- Image logs Formation Micro Scanner (FMS) Analysis
 - Natural Fractures (distribution, attitude and characteristics)
 - Bed Dips
 - Lithologic Boundaries
 - Stress Directions & Magnitudes
 - Borehole Condition
- Temperature-Pressure-Spinner Flowmeter logs:
 - Fluid inflow and outflow zones
- Density logs:
 - Vertical Stress Magnitude, Rock Mechanics, Porosity
- Velocity logs:
 - Rock Mechanics
- Mud logs and cuttings analysis
 - Cuttings Lithology, Alteration, Texture
 - Mud Losses
 - ROP

Project Management/Coordination

- Summarized management activities :
 - Maintaining project timetable and resources allocation
 - Monitoring funds/budget/spend plan
 - Executing on-site activities
 - Information flow: conducting quarterly meeting and workshops

(UNR) George Danko: A new Analytic-Adaptive Model for EGS Assessment, Development and Management Support Hi-Q Geophysical Inc. (John H. Queen): Seismic Fracture Characterization Methodologies For Enhanced Geothermal Systems

LANL (Lianjie Huang): Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in Enhanced Geothermal System (EGS) Reservoirs

NMBG / GFZ: Detailed Structural Mapping and Surface Stress Indicators

- Evaluate relevant technologies , i.e. Tilt Metering survey, Shot calibration ...
- Progress Reporting
- Prepared Induced Seismicity protocol and installed passive monitoring array
- Coordinating UNR & BLM stimulation monitoring and activities

Summary Slide

- The Bradys EGS Project Emphasizes the Importance of:
 - Strong research team plus dedicated field operations partner
 - Integration of tectonics, geology, petrology, rock mechanics and stress
 - Well designed MEQ system that has been deployed early in the project
 - Protocol for monitoring and managing Induced Seismicity
- Our Goal: Enhance permeability in 15-12 ST1 to increase generation at the Bradys Power plant by 2-3 MW

Bradys EGS Research Team

- Ormat (field owner / operator) oversight, organization, drive, interface with DOE, drilling, field operations
- GeothermEx technical management, hydraulic testing, modeling, evaluation
- Jim Faulds (UNR) Inga Moeck (GFZ) geologic mapping, structural model,
 3D geologic model, surface stress indicators
- **USGS:** 1) Steve Hickman, Nick Davatzes (now Temple University) stress field analysis, rock mechanics, mini-frac, structural modeling; 2) Bruce Julian, Gillian Foulger seismic monitoring and analysis
- **EGI**: Peter Rose tracer testing, geologic modeling
- LBNL: Ernie Majer (seismic monitoring and analysis); Mack Kennedy (fluid and isotope geochemistry)
- Schlumberger TerraTek (Susan Lutz) petrology, stratigraphy, core testing
- GMI (Daniel Moos) logging analysis, stimulation planning
- Roy Baria (Miltech) and Dimitra Teza (Bestec) project peer review and stimulation planning