
Geothermal Technologies Office 2013 Peer Review

ENERGY Energy Efficiency & Renewable Energy

Azimuth

300°C DDS + 300°C MWD

Project Officer: Bill Vandermeer Total Projects Funding: \$6.25 MLN + \$6.25MLN April 24, 2013

This presentation does not contain any proprietary confidential, or otherwise restricted information.

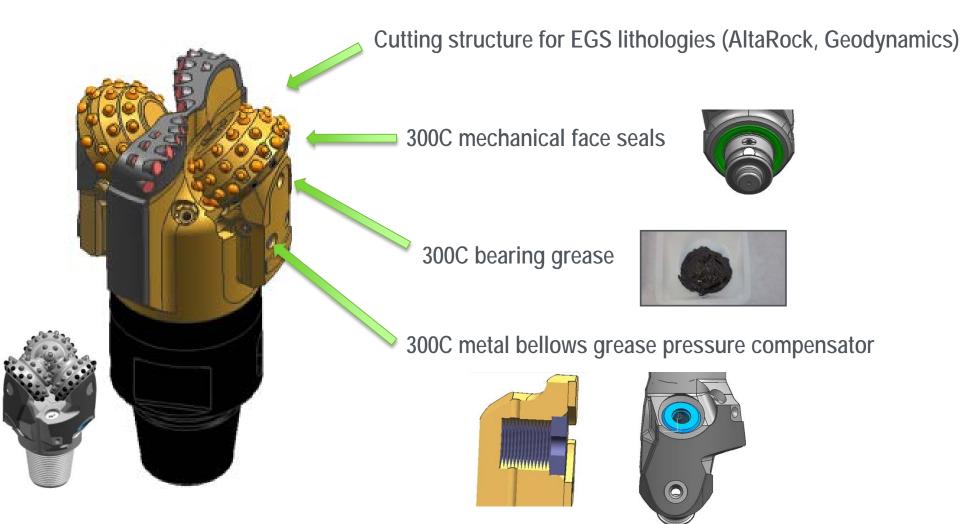
Principal Investigator (always include) Aaron Dick and Jochen Schnitger Baker Hughes

Track Name: EE0002782 + EE0005505

Relevance/Impact of Research (1/2)

- A directional drilling system (DDS; EE0002782) and directional measurement-while-drilling system (MWD; EE0005505) for geothermal applications will operate in hard rock at depths as great as 10,000 meters and temperatures as high as 300°C.
- Enhancing productivity of EGS
 - Known
 - Geology
 - Local heat capacity
 - Design wellbore
 - Placement in the fractured system
 - Increase volume productive zones
 - Commercial DDS and MWD are functional up to 200°C
- Aligned with GTP R&D goals:
 - Drilling systems: 3x faster rate of drilling than conventional rotary drilling, depths up to 10,000 meters and temperature up to 300°C
 - Downhole tools: Depths of 10,000 meters and temperature up to 300°C

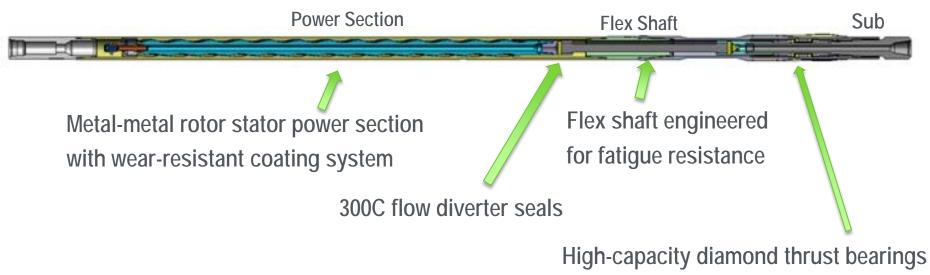
Relevance/Impact of Research (2/2)

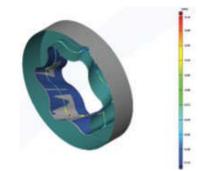


- Components
 - Drill bit
 - Steerable motor
 - Drilling fluid / equipment
 - Telemetry device
 - Power module
 - Downhole electronics
 - Navigation instrument
- Impact
 - Combining tools of both projects will deliver a complete directional drilling system with MWD navigation, that is capable of 300°C operating temperatures

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy


300C Drill Bits



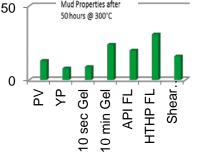
Drill Bit

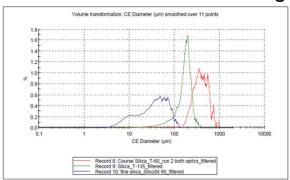
300C Directional Motor

for high weight-on-bit hard rock drilling

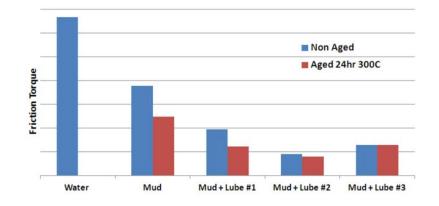
New manufacturing methods

4¾-in. metal-metal motor flow loop test


4¾-in. 300C test stand

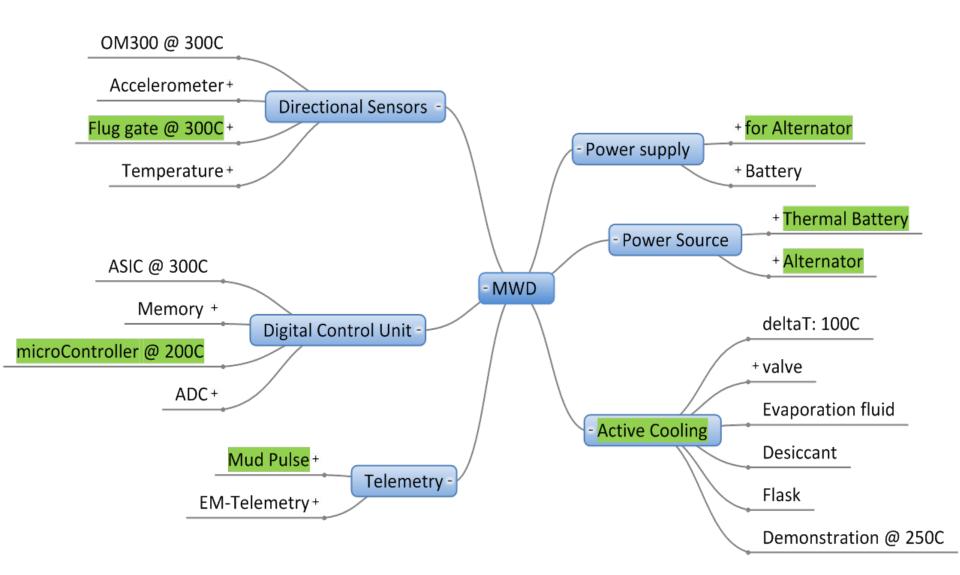

300C Drilling Fluid

 Thermally stable drilling fluid aging @ 300℃

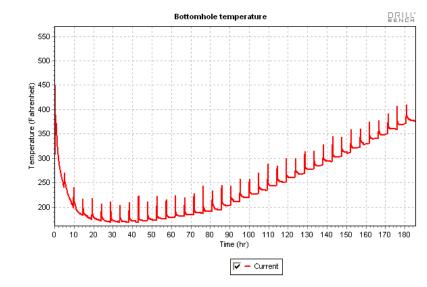


• Test fluids with abrasive particles for metal-metal motor coating tests

 Lubricant / Wear reduction – Increase motor run time



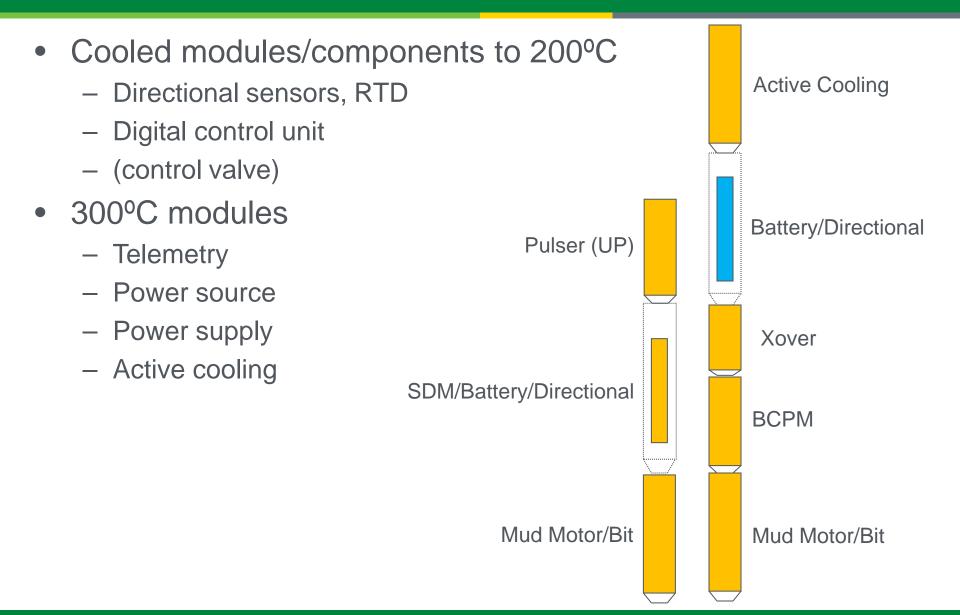
Block on ring wear test
Mud No Lube
Mud With Lube



Energy Efficiency & Renewable Energy

- Description of EGS environment
 - Lithology
 - Hard fractured rock strengthened by hydrostatic pressure
 - Temperature
 - Static formation temperatures to 325°C (Newberry)
 - PresMod simulation of circulation temperature
 - Temperature at BHA
 - Temperature variation at BHA
- Evaluation of components
 - Data sheets
 - Independent tests
 - Development of demonstrators

U.S. DEPARTMENT OF


ENERGY

Energy Efficiency &

Renewable Energy

Energy Efficiency & Renewable Energy

Accomplishments, Results and Progress

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Original Planned Milestone/ Technical Accomplishment	Actual Milestone/Technical Accomplishment	Date Completed
Directional Drilling System Phase 1 Concept (Bit, Fluid, Motor)	System concepts created for Newberry and S. Australia EGS	6/22/2011
Directional Drilling System Phase 2 Design (Bit, Fluid, Motor)	Designs created for Tricone and Kymera hybrid bits, metal-metal motor, drilling fluid with lubricant additive	Bits – 9/28/12 Motor – 12/14/12 Fluid - pending
Directional Drilling System Phase 3 Manufacture (Bit, Fluid, Motor)	Drill bits –fabrication started Motor – $4\frac{3}{4}$ -in. fabricated and tested, $6\frac{3}{4}$ -in. started Fluids – recipes created and priced out	Bits – started Motor – started Fluid - started
Directional Drilling System Phase 4 Test (Bit, Fluid, Motor)	BETA test site – well cased to granite basement rock for system test	

Accomplishments, Results and Progress

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Original Planned Milestone/ Technical Accomplishment	Actual Milestone/Technical Accomplishment	Date Completed
MWD - Concepts for active cooling system	Concept with and without active cooling; cooling different sub-systems	
MWD - Evaluate and select directional sensors	300°C – OM300; 200°C to 230°C accelerometers and flux gates	
MWD - Evaluate and select electronics for active Cooling	200°C multi-chip modules; packaging; single components	
MWD - Concept and selection for active cooling system	In collaboration with GEBO and Lower Saxony program, critical components identified	
MWD - Identify power supply and Telemetry concept	Concept phase for EM and mud pulse; Test of thermal batteries; Alternator wiring	

No decision made. Overall system must have the lowest risk!

ENERGY | Energy Efficiency & Renewable Energy

Directional Drilling System (Bit, Motor, Fluid)

- Jan 2013 Aug 2013: Manufacture
 - Complete manufacture of 9 bits (April), 3 motors (August)
 - 300°C motor test stand installed at Houston facility in June
 - Procure materials for fluid batches
- April 2013 March 2014: System Testing
 - Drilling simulator test of bit + fluid in granite in April
 - System testing Baker Hughes Experimental Test Area (BETA)
 - Identify suitable field test opportunity to directionally drill hot hard rock and execute test
 - Forensic evaluation of tools
 - Project conclusions and commercialization.

Future Directions

ENERGY Energy Efficiency & Renewable Energy

Measure While Drilling (MWD) Tool

- Evaluation of concepts
 - Design and Manufacture experimental systems
 - Test and evaluate experimental systems
 - Analyze concept
 - Perform peer review
- System
 - Telemetry Mud pulse servo amplifier
 - Telemetry EM driver of a high current
 - Power source alternator testing of mechanical integrity of windings
 - Power source thermal batteries operational handling
 - Active cooling test at 250°C upgrade components to 300°C
- Go/No-Go gate in January 2014
 - Instead of May 2013
 - Delayed patent waiver
 - Joint development agreements

Mandatory Summary Slide

• MWD

- Sub components evaluated
- Several design concept are developed
- Directional Drilling Tools (Bit, Motor, Fluid)
 - Manufacture phase started
 - 9 ea. 8½-in. diameter bits, 3 ea. 6¾-in. motors and fluid recipe complete in August
 - BETA system test in September

Project Management

Renewable Energy

Timeline:	Planned Start Date 4/1/2010		Planned End Date 4/30/2013	Actual Start Date 4/1/2010			Current End Date 9/30/2013	
Budget:	Federal Share	Cost Share	e Planned Expenses to Date	Actual Expenses to Date		le of Impleted Date	Funding needed to Complete Work	
	\$5,000,000	\$1,273,00	0 \$3,543,000	\$3,663,000	\$3,84	9,750	\$2,567,000	

Timeline:	Planned Start Date 1/1/2012		Planned End Date 12/31/2014		Actual Start Date 1/5/2012			Current End Date /30/2015	NΝ
Budget:	Federal Share	Cost Sha	are	Planned Expenses to Date	Actual Expenses to Date	Valu Work Co to D	mpleted	Funding needed to Complete Work	NM
	\$5,000,000	\$1,250,0	000	\$854,000	\$354,474	\$377	,475	\$5,993,000	

- Keep/establish contact to EGS operators
- Collaboration with international funded programs
 - GEBO Germany
 - Lower Saxony program Germany
- Project delays
 - Receiving patent waiver in May 2012 / Kick off meeting in June 2012
 - Joint development agreements