

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

U.S. Department of Energy Hydrogen and Fuel Cell Technology Overview

Dr. Sunita Satyapal, Director – DOE Hydrogen and Fuel Cells Program FC EXPO 2020

Tokyo, Japan – February 26, 2020

International Partnership for Hydrogen and Fuel Cells in the Economy

Accelerating Hydrogen and Fuel Cells Progress Through Global Collaboration

Sunita Satyapal – IPHE Chair Toshiyuki Shirai – IPHE Vice Chair Tim Karlsson – Executive Director, IPHE Secretariat

U.S. Energy Portfolio

eia

U.S. primary energy consumption by energy source, 2018

Note: Sum of components may not equal 100% because of independent rounding. Source: U.S. Energy Information Administration, *Monthly Energy Review*, Table 1.3 and 10.1, April 2019, preliminary data

Energy Consumption by Sector

Industrial ~ 32%

Residential (20%) & Commercial (19%)

Transportation ~ 29%

Transportation Sector

90% dependent on petroleum 85% of use is from on-road vehicles

2nd largest expense after housing

U.S. Emissions by Sector

SOURCE: United States Environment Protection Agency

H₂ is one part of an all-of-the-above energy portfolio and can impact all sectors

H₂@Scale: Enabling affordable, reliable, clean, and secure energy across sectors

U.S. legislation guiding hydrogen and fuel cell research and development activities

U.S. Energy Policy Act (2005) Title VIII on Hydrogen

Authorizes U.S. DOE to lead a comprehensive program to enable commercialization of hydrogen and fuel cells with industry. Includes broad applications: Transportation, utility, industrial, portable, stationary, etc.

Program to date

\$100M to \$250M per year

100 to 200+ projects per year

>100 organizations & extensive collaborations

Includes RD&D on:

H₂ production, delivery, storage, utilization (including fuel cells)

Crosscutting: Analysis, systems development/integration, safety, codes and standards, education & outreach

Snapshot of Hydrogen and Fuel Cells Applications in the U.S.

Fuel cells operating all over the U.S.

Fuel cells used for backup power in more than 40 states

Over 8,000 backup power units

deployed or on order

Source: DOE State of the States: Fuel Cells in 2016 Report

Over 500MW

in stationary fuel cell power installed

Telecom, Government, Railroad, Utility sites
Telecom, Government, Railroad sites
Telecom and Government sites
Government, Railroad, Utility sites
Telecom sites
Government sites
Railroad sites
Utility sites
Government and Railroad sites
Telecom and Railroad sites

Material Handling Applications

More Than 30,000 Forklifts

Over 22 Million Refuelings

Hydrogen fuel cell cars on the road in select U.S. regions

Hydrogen stations growing, driven at the state-level

Complementing retail stations: H2Refuel H-prize

simple.fuel

DOE awards \$1M H-Prize to SimpleFuel for winner of smallscale H₂ fueling system Industry using SimpleFuel refueling system for forklifts in Japan

simple.fuel.™

Ivys Energy Solutions (MA) McPhya Energy (MA) PDC Machines (PA)

Email: connect@ivysinc.com

More info: www.teamsimplefuel.com

© Ivys Inc., All Rights Reserved 2016

Bus and long-range, heavy duty applications emerging

UPS unveils first extended range fuel cell electric delivery vehicle

The Nikola Badger, a fuel cell truck with a 966 km range

ProGen-powered Fedex operates more than 10,000 miles on-road

1st Hydrogen ferry under construction in U.S.

More interest emerging in trucks and heavy-duty vehicles – State and regional emissions drivers

Industry Plans For Hydrogen Fuel Cell Trucks And Supporting Infrastructure Underway

ZH2: U.S. Army And GM Collaboration on Truck for Military Applications

Photo Credit: General Motors

OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

R&D Needs and Program < Overview

HZ

Budget

Fuel Cell Technologies Office (FCTO) within Energy Efficiency and Renewable Energy (EERE)

FCTO – Hydrogen and Fuel Cells Breakdown FY 2020

	FY 2018	FY 2019	FY 2020
Fuel Cell R&D	32,000	30,000	26,000
Hydrogen Fuel R&D	54,000	39,000	45,000
Hydrogen Infrastructure R&D*	-	21,000	25,000
Technology Acceleration	19,000	21,000	41,000
Safety, Codes, and Standards	7,000	7,000	10,000
Systems Analysis	3,000	2,000	3,000
Total	\$115,000	\$120,000	\$150,000

 Fuel Cell
 Hydrogen Fuel
 Hydrogen
 Technology

 R&D,\$26M
 R&D,\$45M
 Infrastructure
 Acceleration,

 R&D,\$26M
 Systems
 \$41M

 Systems
 Safety, Codes,
 and Standards,

 \$10M
 \$10M

*Will be moved under Hydrogen Fuel R&D in FY 2021

DOE Hydrogen and Fuel Cells Appropriations

DOE Office	Funding (in thousands)
EERE (FCTO)	\$150,000
Fossil Energy (SOFC)	\$30,000
Nuclear Energy	\$11,000*

* For coordination between NE and EERE FCTO on nuclear to hydrogen Office of Science, Basic Energy Sciences Funding is for FY18 ~ \$19 million for projects relevant to H2 and fuel cells (e.g. catalysis, etc.); FY 20 TBD For coordinated project with EERE

ARPA-E- Funding based on specific program selected each year; FY20 TBD

*Will be moved under Hydrogen Fuel R&D in FY 2021

H₂ Production Pathways of Interest

Low-cost hydrogen production from diverse domestic feedstocks & energy resources—enhancing long-term resiliency & opening regional market opportunities

Examples of Activities to Enable H2@Scale

Assessing resource availability. Most regions have sufficient resources. 4 new H2@scale demonstration projects in Texas, Florida and Midwest.

Includes 1 project by Office of Nuclear Energy

Example of H2@Scale Project: Integrated Hydrogen Production and Consumption for Improved Utility Operations – Orlando, FL

Note: Based on original submission. To be updated based on project finalization

Example of H2@Scale Project: Electrolyzer Operation at Nuclear Plant and In-House Hydrogen Supply

Note: Based on original submission. To be updated based on project finalization

Example of H2@Scale Project: Demonstration and Framework for H2@Scale in Texas and Beyond

Integration Concepts Being Considered

Note: Based on original submission. To be updated based on project finalization

Partners

Frontier Energy

University of Texas

GTI

Toyota

Air Liquide

Waste Management

OneH2

Hydrogenics

Duration

36 Months

Total budget

\$12.7M

Opportunities Identified in H2@Ports, H2@Rail, H2@Datacenters Workshops

H2@Ports

- Collaboration between DOE, DOT -Maritime Administration, FCH JU, European Commission, global industry, end users and ports, states

- RD&D & techno-economic assessment needs

- Power system options and TCO
- Cluster approach to increase scale
- Regulations and standards
- TCO: Total cost of ownership

H2@Datacenters

- Collaboration between DOE, industry, end user
- RD&D & techno-economic assessment needs
- Prime or backup power for critical loads of data centers
- Scenario development to enable cost effective fuel cells and hydrogen storage
- Potential additional revenue streams

H2@Rail

- Collaboration between DOE, DOT -Federal Railroad Administration, global industry, end users, states
- RD&D & techno-economic assessment needs
- Prime power system development
- Rail system operations and TCO
- Regulations, safety, codes, standards

Workshop details available at: www.energy.gov/eere/fuelcells/workshop-and-meeting-proceedings

Targets to Guide Long Term R&D for Heavy-Duty Vehicles

Fuel Cell Truck Targets Developed To Enable Comparable Total Cost Of Ownership With Diesel Trucks

hydrogen.energy.gov/pdfs/19006_hydrogen_class8_long_haul_truck_targets.pdf

Table 1. Technical System Targets: Class 8 Long-Haul Tractor-Trailers

Characteristic	Units	Targets for Class 8 Tractor-Trailers	
Characteristic		Interim (2030)	Ultimate ⁹
Fuel Cell System Lifetime ^{1,2}	hours	25,000	30,000
Fuel Cell System Cost ^{1,3,4}	\$/kW	80	60
Fuel Cell Efficiency (peak)	%	68	72
Hydrogen Fill Rate	kg H₂/min	8	10
Storage System Cycle Life ⁵	cycles	5,000	5,000
Pressurized Storage System Cycle Life ⁶	cycles	11,000	11,000
Undrogon Storogo System Cost ^{47,8}	\$/kWh	9	8
nyurogen storage system Cost w/s	(\$/kg H ₂ stored)	(300)	(266)

Developed through industry workshop, input and analysis on long term stretch goals to guide R&D community

R&D focus is on Affordability and Performance: DOE Targets Guide R&D

[†]Based on commercially available FCEVs ^{*}Based on state of the art technology

⁺Storage costs based on preliminary 2019 storage cost record [†]For range: H2 production from natural gas (NG), delivered dispensed at today's (2018) stations (~180kg/d)

*For range: Assumes high volume manufacturing in 1) H2 production costs ranging from \$2/kg (NG) to \$5/kg (electrolysis manufactured at 700 MW/year), and 2) Delivery and dispensing costs ranging from \$3/kg (advanced tube trailers) to \$5/kg (liquid tanker or advanced pipeline technologies).

** Range assumes >10,000 stations at 1,000 kg/day capacity, to serve 10 million vehicles

Hydrogen R&D Areas – Examples

Example of Recent Hydrogen Carriers Analysis

- Preliminary analysis shows cost of transporting H₂ in carriers ranges between ~\$5/kg and \$7.50/kg
- At large volumes, methanol is competitive with compressed
 H₂ even when transported 3,000 km from gulf coast

Source: Argonne National Laboratory

Real world data collection, sharing and analysis are key tools to enable collective progress addressing technical issues

Example from Reliability Engineering

Bathtub Curve

Years After Shipment

Hydrogen Infrastructure Maintenance by Equipment Type

National Fuel Cell Technical Evaluation Center (NFCTEC) at DOE's National Renewable Energy Laboratory (NREL) collects data to inform future work

Safety Incident Reports by Type

Cause and Effect Analysis of Hydrogen Infrastructure Incidents

Example of Cause and Effect Analysis

Example of insight on hydrogen components safety

Figure A2. pressure relief valve components: failed nozzle subassembly (A1 and A2); inlet base (B); disk subassembly (C); set spring (D).

Pressure relief valve failure caused hydrogen release- led to safety concerns and evacuation

Type 440C Stainless Not Suitable For This Application

Example of insight on hydrogen component reliability

Figure A5. Polished cross sections of (a) functioning nozzle and (b) failed nozzle. The arrows indicate the internal corner associated with failure of the nozzle.

Type 440C Stainless Not Suitable For This Application

Source: prod-ng.sandia.gov/techlib-noauth/access-control.cgi/2012/128642.pdf

Example of Collaboration: Global Center for H₂ Safety (CHS)

IPHE Steering Committee action: Increase awareness of safety partnership. Promotes safe operation, handling and use of hydrogen across all applications.

www.aiche.org/CHS

Cross-cutting Materials Compatibility R&D

H-Mat Consortium launched in FY18 to conduct R&D on hydrogen effects on polymers and metals

Focus of current activities include:

- 1) Reduce expansion of seals in hydrogen by 50%
- 2) Enhance life of vessels by 50% through improved understanding of crack nucleation.
 - 3) Enhance fracture toughness of high-strength (>950 MPa) steels by 50%.

For more information energy.gov/eere/fuelcells/h-mat-hydrogen-materials-consortium

h-matinfo@pnnl.gov

Collaboration Is Key

Global government partnership to accelerate progress on hydrogen and fuel cells

Information available and IPHE actions underway

Regulations, Codes, Standards and Safety (RCSS)

Fosters RCS harmonization across countries Shares safety information, best practices, lessons learned

Education and Outreach (E&O)

- Creates unbiased factual materials for each country
- Increases stakeholder engagement through workshops, policy forum events, education events
- Shares information on status, gaps, analysis, policies, opportunities, and more

Task Force on H₂ production methodology

Analysis to facilitate international H2 trade & guide 'certificate' of origin method formulation

Exam	Examples of IPHE Member Deliverables - Country Updates						
	Name	Sunita Satyapal					
	Contact Information	Sunita.Satyapal@ee.doe.gov +1 202-588-2338 Greg.Kleen@ee.doe.gov +1 240-582-1672 Eric.Miller@ee.doe.gov +1 202-287-5829					
	Covered Period	December 2018 to April 2019					
 The Off fue Co that See and by Ca Fue Fue red of fue 	 treev initiatives, ring arise, ain cloudes of hydrolight and rule cleats The 2019 budget for the U.S. Department of Grang's (DOES) Fuel Cell Technologies Office (FOTO) is \$120 million. An additional \$30 million was appropriated for solid oxide fuel cells which is under the punkwe of DOES officie (Fost) and the cells which is under the punkwe of DOES officie (Fost) and the cells which is under the punkwe of DOES officie (Fost) and the cell cells. Colorado introduced an executive order to adopt a zero emission vehicle (ZEV) mandate that would increase the percentage of ZEVs, including fuel cell cars, sold in the state. Several states are ramping up plans for energy storage. For example, Arizon and announced it would pursue 80% clean energy by 2020 and 3.000 MW of energy storage by 2030. California increased the carbon intensity reduction requirement was a 10 percent reduction in carbon intensity by 2020. The state defines carbon instration arised in exolution to the state indication of production to advon intensity by 2020. The state defines carbon intensity as the amount of carbon emitted throughout a fuel's entire life cycle, from extraction or production to advontion to advontion to advontion the carbon intensity reduction requirement was a 10 percent reduction in earbon intensity by 2020. The state defines carbon intensity as the amount of carbon emitted throughout a fuel's entire life cycle, from extraction or production to advontion to advontion to advontion to advolt and the count of carbon intensity as the amount of carbon emitted through a fuel's entire or production to advolt and the count of carbon intensity as the count of carbon cented throughout a fuel's entire life cycle. The materiation or production to advolt and the carbon formation or production to advolt and the carbon intensity as the amount of carbon emitted throughout a fuel's entire or advolt and the carbon productind to advolt and the carbon or advolt and the carbon producti						
Co Co for phi ow sys Da an	 compussion. Hydrogen qualifies as a low-carbon fuel. Congress emissted the Section 48 and Section 250 Investment Tax Credit for fuel cells for businesses and residential installations. The reinstatement established a tiered phase-out of the credit through Iguel 2023, based on when construction commences, allowing owners of stationary and material handling fuel cell systems to claim up to 50% of total system equipment and installation costs. Daniel Simmons was officially seron in as the Assistant Secretary for Energy Efficiency and Renewable Energy (EERE) at the U.S. DOE. FCTO is one of the areas he oversees 						

www.iphe.net

Save the Date – March 18: Hydrogen as main topic in upcoming Nuclear Innovation Clean Energy Future (NICE) webinar

Opportunities for Hydrogen

<u>Topic</u>

In the lead up to the June 2020 Eleventh CEM meeting in Viña del Mar Chile, tune in to the webinar and hear how ministers and stakeholders plan to accelerate action to realize hydrogen's potential. Hear from experts from the United States, Canada, Japan and the IEA about new technologies in this arena that advance a clean and integrated systems approach.

<u>When</u>

March 18, 2020, 8:00 am – 9:30 am EST

Where To Register

attendee.gotowebinar.com/register/827977 1562413966605

"Hydrogen – at Scale and Sector Coupling" – A Common Vision Across Multiple Regions in the World

Industry-Led Hydrogen Roadmap To Inform Stakeholders on Hydrogen Potential Across Sectors in the US

Additional upside from other Hydrogen demand users (Synthetic jet fuel, **ROAD MAP TO A US** 1111 potential across sectors ammonia as fuel for shipping) **HYDROGEN ECONOMY** 63 – 2030 and 2050 vision 2 New feedstock Million metric tons per year 4 Executive summary Power generation and grid balancing 5 Fuel for industry 8 Fuel for residential and commercial buildings **Industry estimates** hydrogen demand Transportation fuel potential at 17 MMT by 2030 and over 63MMT by 2050 10 Reducing emissions and driving 16 16 13 13 growth across the nation Existing feedstock 10 0% 0.1% 1% 14% H₂ share of final energy demand² More info: www.fchea.org/us-hydrogen-study Base Ambitious Base Ambifious 2015 2030 2050

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY FUEL CELL TECHNOLOGIES OFFICE

Global Activities and Commitments are Strong

More than 1/3 million stationary fuel cells, 15,000 FCEVs, 400 stations Over 1 GW of fuel cells shipped in 2019 Plans developing for applications across sectors

¹ IPHE Country Updates

Ways to increase awareness and outreach

Save the Date

May 19 – 21: 2020 Annual Merit Review and Peer Evaluation Meeting (AMR) for the DOE Hydrogen and Fuel Cells Program in Washington D.C.

Resources

Visit H2tools.org for hydrogen safety and lessons learned

Download the H2IQ resource for free: <u>energy.gov/eere/fuelcells/downloads/increase-your-h2iq-training-resource</u>

Join monthly H2IQ hours to learn more about hydrogen and fuel cell topics <u>.energy.gov/eere/fuelcells/fuel-cell-technologies-office-webinars</u>

Sign up to receive hydrogen and fuel cell updates

www.energy.gov/eere/fuelcells/fuel-cell-technologies-office-newsletter

Learn more at: energy.gov/eere/fuelcells or hydrogen.energy.gov

Thank You

DOE Hydrogen and Fuel Cells Program

Fuel Cell Technologies Office

Sunita Satyapal

Director Sunita.Satyapal@ee.doe.gov

www.energy.gov/fuelcells www.hydrogen.energy.gov