

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

A Total Cost of Ownership Model for High Temperature PEM Fuel Cells in Combined Heat and Power Applications

Max Wei, Timothy Lipman¹, Ahmad Mayyas¹, Shuk Han Chan², David Gosselin², Hanna Breunig, Thomas McKone

Lawrence Berkeley National Laboratory (LBNL) 1 Cyclotron Road MS 90R-4000 Berkeley, California, 94706 Phone: (510) 486-5220 E-mail: <u>mwei@lbl.gov</u>

¹University of California, Berkeley, Transportation Sustainability Research Center, Berkeley, California ²University of California, Berkeley, Laboratory for Manufacturing and Sustainability, Department of Mechanical Engineering, Berkeley, California

Revision 1

Environmental Energy Technologies Division October 2014

This work was supported by the U.S. Department of Energy under Lawrence Berkeley National Laboratory Contract No. DE-AC02-05CH11231

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California.

Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer.

Acknowledgements

The authors gratefully acknowledge the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE) Fuel Cells Technologies Office (FCT) for their funding and support of this work.

The authors would like to express their sincere thanks to Bob Sandbank from Eurotech, Mark Miller from Coating Tech Services, Geoff Melicharek and Nicole Fenton from ConQuip, Emory DeCastro from Advent Technologies, Dominic Gervasio from University of Arizona, Douglas Wheeler from DJW Technology, Hans Aage Hjuler from Danish Power Systems, Tequilla Harris from Georgia Institute of Technology, Charles Tanzola from Innoventures, Owen Hopkins from Entegris, Paul Dyer from Zoltec, Andrew DeMartini from Doosan Fuel Cell America, Inc. and Charleen Chang from Richest Group (Shanghai, China) for their assistance and valuable inputs.

Table of Contents

E	xecutive Summary	6
Т	able of Abbreviations and Nomenclature	8
1	. Introduction	10
	1.1. System Design	
	1.2. Functional Specifications	
2	. DFMA Manufacturing Cost Analysis	14
	2.1. Polybenzimidazol (PBI) based membranes	14
	2.1.1. Process Flow of PBI-Based membrane	16
	2.1.2. Casting Process Parameters	19
	2.1.3. Cost Model Results for PBI-based membrane	21
	2.2. Gas Diffusion Electrode (GDE)	24
	2.2.1. Preparation of the GDEs impregnated with phosphoric acid	
	2.2.2 Cost Model Results for Gas Diffusion Electrode	25
	2.3. Membrane Electrode Assembly (MEA) Frame	27
	2.3.1. MEA Frame Cost Model Results	
	2.4. Separator Plates	
	2.4.1. Cost Model Results for the Separator Plate	
	2.4.2. Sensitivity Analysis for HAP	
	2.4.3. Simplified Half Plates	
	2.5. Stack Assembly Process	
	2.5.1. Stack Assembly Results	
	2.6. Sensitivity Analysis	
3	Balance of Plant and Fuel Processor Cost	46
	3.1 BOP Costing Approach	
4	- Fuel Cell System Direct Manufacturing Costing Results	50
	4.1. HT PEM Fuel Cell System Costing Results	50
	4.2. Comparison between HT PEM and LT PEM Fuel Cell Systems	55
5	Total Cost of Ownership Modeling of CHP Fuel Cell Systems	59
	5.1. Use-phase Model	59
	5.1.1. Use-phase model results	60
	5.2. Life Cycle Impact Assessment (LCIA) Modeling	
	5.3. Total Cost of Ownership Modeling Results	67
6	. Conclusions	

References	74
Appendix A: Costing Approach and Considerations	77
A.1. DFMA Costing Model Approach	78
A.2. Non-Product Costs	
A.3. Manufacturing Cost Analysis - Shared Parameters	
A.4. Factory model	
A.5. Yield Considerations	
A.6. Initial Tool Sizing	
A.7. Time-frame for Cost Analysis	85
Appendix B: DFMA Manufacturing Cost Analysis	86
B.1. Polybenzimidazol88 (PBI) based membranes	
Appendix C: Balance of Plant Cost and Total System Cost Results 1	.09
Appendix D: Total Cost of Ownership Modeling of CHP Fuel Cell Systems 1	25

Executive Summary

A total cost of ownership model is described for emerging applications in stationary fuel cell systems, specifically high temperature proton exchange membrane (HT PEM) systems for use in combined heat and power applications from 1 to 250 kilowatts-electric (kWe¹). The total cost of ownership framework expands the direct manufacturing cost modeling framework of other studies to include operational costs, life-cycle impact assessment of possible ancillary financial benefits during operation and at end-of-life, including credits for reduced emissions of global warming gases, such as carbon dioxide (CO₂) and methane (CH₄), reductions in environmental and health externalities, and end-of-life recycling.

System designs and functional specifications for HT PEM fuel cell systems for co-generation applications were developed across the range of system power levels above. Detailed, design-formanufacturing-and-assembly² (DFMATM) analysis was utilized to estimate the direct manufacturing costs for key fuel cell stack components. The costs of the fuel processor subsystem are also based on an earlier DFMATM analysis by Strategic Analysis (James, 2012). Since HT PEM fuel cell systems were not available for inspection, balance of plant components relied on the inspection of currently installed LT PEM and phosphoric acid fuel cell (PAFC) systems for balance of plant subsystem components, and these were adopted for HT PEM technology.

Note that there are few HT PEM FC systems currently in operation due to a variety of stack reliability and system design issues (Brooks, 2014). This work assumes that these stack issues and system design issues can be resolved with further research and development activities. The manufacturing costs presented here thus represent the authors' best estimates for longer-lifetime HT PEM technology but may in fact be an underestimate of true manufacturing costs if additional more expensive design features required for robust CHP system operation are not captured here.

Fuel cell stack costs and overall system costs have a strong dependence on the annual production volume. Overall system costs including corporate markups and installation costs are about \$3900/kWe for 10kWe CHP systems at an annual production volume of 50,000 systems per year, and about \$2400/kWe for 100kWe CHP systems at 50,000 systems per year. Bottom-up cost analyses show that the development of high throughput, automated processes achieving high yield is a key success factor in achieving lower fuel cell stack costs.

At high production volume, material costs dominate the cost of fuel cell stack manufacturing. For CHP systems at low power, the fuel processing subsystem is the largest cost contributor to total non-stack costs. At high power, the electrical power subsystem is the dominant cost contributor to non-stack costs. Cost reduction opportunities for BOP components are expected to be available through both greater standardization of fuel cell subsystem parts and optimized design.

Compared to the authors' recent report on LT PEM CHP systems (Wei et al., 2014), HT PEM CHP direct system costs are about 15% higher at low annual production volumes (100 x 10kWe systems per year) to 30% higher at high volumes (50,000 x 100kWe systems per year). Current cost estimates for HT PEM CHP systems are more costly than LT PEM CHP systems costs due to three main factors: (1) lower current density and higher cell areal size; (2) more complex plate design and expensive plate process; and (3) higher catalyst loading.

¹ In this report, units of kWe stand for net kW electrical power unless otherwise noted.

² DFMA is a registered trademark of Boothroyd, Dewhurst, Inc. and is the combination of the design of manufacturing processes and design of assembly processes for ease of manufacturing and assembly and cost reduction.

Life-cycle or use-phase modeling and life cycle impact assessment (LCIA) were carried out for a several building types (e.g., small hotel and hospitals) in several locations in the United States (Phoenix, AZ, Chicago, IL, Minneapolis, MN, New York City, NY, Houston, TX, and San Diego, CA). For example, assuming capital costs corresponding to 100MWe of annual production (or 10,000 x 10kWe systems), installing a 10kWe CHP fuel cell system in a small hotel would reduce the effective cost of electricity (\$/kWhe)) by 14-26% from heating fuel savings; 2-16% in savings from carbon credits from greenhouse gas reduction; and 1-20% savings from societal health and environmental externalities. The amount of these savings are dependent on several factors such as the cost of natural gas, utility tariff structure, amount of waste heat utilization, carbon intensity of displaced electricity, and carbon price. Including heating credit, global warming reduction credits and health and environmental impacts can reduce the levelized cost of electricity for HT PEM FC systems by up to 58% in small hotels and up to 65% in hospitals studied in Chicago.

This project cost study considers both externalities and ancillary financial benefits, and thus provides a comprehensive picture of fuel cell system benefits, consistent with a policy and incentive environment that increasingly values these ancillary benefits. The project provides important modeling results that should aid a broad range of policy makers in assessing the integrated costs and benefits of fuel cell systems versus other distributed generation technologies.

Table of	Abbreviations and Nomenclature
AC	alternating current
APEEP	Air Pollution Emission Experiments and Policy Analysis Model
AEF	average emission factor
BIP	bipolar plate
BOL	beginning of life
BOM	bill of material
BOP	balance of plant
BPP	bipolar plate
BU	backup
BUP	backup power
CEM	continuous emissions monitoring system
CCM	catalyst coated membrane
CEUS	California Commercial End-use Survey
CHP	
CO	combined heat and power carbon monoxide
DC DED CAM	direct current Distributed Energy Descurres Customer Adaption Model
DER CAM	Distributed Energy Resources Customer Adoption Model
DFMA	Design for Manufacturing and Assembly
DG	distributed generation
DHW	domestic hot water
DI	de-ionizing
DOE	U.S. Department of Energy
DTI	DTI Energy Inc.
EOL	end of life
EPA	Environmental Protection Agency
ePTFE	expanded polytetrafluoroethylene
FC	fuel cell
FCS	fuel cell system
FEP	fluorinated ethylene propylene
FMEA	failure modes and effect analysis
FP	fuel processor
GDL	gas diffusion layer
GHG	greenhouse gas
GIS	geographic information system
GREET	Argonne National Laboratory's Greenhouse Gases, Regulated Emissions, and Energy
	Use in Transportation model
GWP	global warming potential
G&A	general and administrative expense
HDPE	high density polyethylene
HHV	higher heating value
HMI	human machine interface
HT	high temperature
IM	injection molding
IR	infrared
kWe	kilowatts of electricity
kWhe	kilowatt-hours of electricity
LBNL	Lawrence-Berkeley National Laboratory
LCA	life cycle assessment

Table of Abbreviations and Nomenclature

LCC	life cycle cost modeling
LCIA	life cycle impact assessment modeling
LHV	lower heating value
LMAS	Laboratory for Manufacturing and Assembly
LSCF	lanthanum-strontium-cobalt-ferrite
LT	low temperature
L-AEF	localized average emission factor
МСО	manganese cobalt oxide
MEA	membrane electrode assembly
MEF	marginal emission factor
Min	minutes
MRO	Midwest Reliability Organization
NERC	North American Electric Reliability Corporation
NG	natural gas
Ni-Co	nickel cobalt
Nm ³	normal cubic meters
NOx	nitrogen oxides
NREL	National Renewable Energy Laboratory
NSTF	nanostructured thin film
NSPC	Northern State Power Company
0&M	operation and maintenance
PBI	Polybenzimidazol
PEN	polyethylene naphthalate
PEM	proton exchange membrane
PFSA	perfluorinated sulfonic acid
РМ	Particulate matter
PNNL	Pacific Northwest National Laboratory
ppmv	parts per million (by volume)
PROX	preferential oxidation
PTFE	polytetrafluoroethylene
Pt/Co/Mn	platinum-cobalt-manganese
PVD	physical vapor deposition
R&D	research and development expense
SMR	steam methane reformer
SOFC	solid oxide fuel cell
SR	steam reforming
ТСО	total cost of ownership model
UTC	United Technologies Corporation
VOC	volatile organic compound
WECC	Western Electricity Coordinating Council
WGS	water gas shift

1. Introduction

High temperature (HT) proton exchange membrane (PEM) fuel cells (FC) are a promising fuel cell technology that has several advantages compared to low temperature PEM fuel cells (LT PEM). Typical HT PEM FC operating temperatures are in the range of 100-200°C and these higher operating temperatures offer higher waste heat temperature for combined heat and power applications, provide greater tolerance to fuel impurities, and allow for simpler balance of system design.

The status of HT PEM technology is that it is in the pre-commercial, development stage. A recent deployment pilot of several 5kW HT PEM CHP units in the U.S. resulted in many early failures due to both stack issues (e.g., plate cracking, phosphoric acid loss, and sealing issues) and system design issues (Brooks 2014), and there are few companies working on the technology in the U.S. There is interest worldwide, however, and companies such as Eisenhuth and Danish Power Systems in Europe are working on HT PEM stack bipolar plates and membrane electrode assemblies (MEA), respectively. The CISTEM project³ in Europe has the objective of developing a modular HT PEM CHP system with system sizes up to 100kWe.

This work assumes that these stack issues and system design issues can be resolved with further research and development activities. The manufacturing costs presented thus represent the authors' best estimates for longer-lifetime HT PEM technology. In particular, a more complex plate design with a separator layer is adopted for better control of phosphoric acid within the MEA and a longer stack lifetime. These cost estimates may however be an underestimate of true manufacturing costs if additional more expensive design features are required for robust CHP system operation.

This chapter discusses stack and system designs and other functional specifications of the HT PEM fuel cell systems that utilize reformate fuel with natural gas as the primary fuel source. Cost modeling of the HT PEM fuel cell stack modules is presented in Chapter 2 using a design for manufacturing and assembly (DFMA) approach. Costing models are developed in a way that emphasizes materials and manufacturing costs, potential recycling and reuse of some scrapped materials. Non-fuel processor balance of the plant cost analysis, in contrast, relies primarily on purchased components, while fuel processor costs utilize earlier bottom-up costing from Strategic Analysis. Overall, cost results show the effect of production volume and economies of the scale on the final cost of HT PEM fuel cell systems.

Chapters 3 and 4 describe the balance of plant components and costs, and total direct and installed system costs, respectively. The bottom-up cost DFMA cost estimates for the fuel cell stack are a key input for total system costs.

Modeling the "total cost of ownership" (TCO) of fuel cell systems involves considering capital costs, fuel costs, operating costs, maintenance costs, "end of life" valuation of recoverable components and/or materials, valuation of externalities and comparisons with a baseline or other comparison scenarios. Including both "private" and "total social costs" (externalities) in TCO analysis allows examination of the extent to which they diverge and un-priced impacts of this technology's implementation. These divergences can create market imperfections that lead to sub-optimal social

³ CISTEM is an acronym for "Construction of Improved HT-PEM MEAs and Stacks for Long Term Stable Module CHP Units." More information on this project can be found at <u>http://www.project-cistem.eu/index.php?id=1</u>, accessed on October 15, 2014.

outcomes, but in ways that are potentially correctible with appropriate public policies (e.g., applying prices to air and water discharges that create pollution).

Chapter 5 presents the analysis approach and results for HT PEM life-cycle or use-phase costs for two building types (small hotels and hospitals) in six U.S. cities (New York City, Chicago, Minneapolis, Houston, Phoenix, and San Diego) with FC capital costs derived from the system cost analysis in Chapter 4. Externality valuation associated with HT PEM CHP system operation is provided based on the research team's earlier modeling (Wei et al., 2014). This includes greenhouse gases and health and environmental externalities. The final section of this report presents TCO modeling of HT PEM CHP systems including use-phase costs, heating fuel savings, and externality valuations.

Much of the analysis approach here has been adopted by the authors' earlier report on LT PEM total cost of ownership analysis for CHP and backup power systems (Wei et al., 2014). This earlier report on LT PEM TCO analysis will be referenced throughout the discussion that follows.

1.1. System Design

Figure 1 shows the system design for a 100kWe HT PEM CHP system with reformate fuel. For bill of materials and component itemization, the system design has been divided into the following subsystems: stack, fuel processing, air supply, water makeup, coolant subsystem, power conditioning, controls and meters, and ventilation air supply. Note that compared to a LT PEM CHP system design, the HT PEM system has the following design simplifications for the balance of plant: no membrane humidification required, no air-slip at the anode due to greater CO tolerance in the incoming fuel stream, and less CO clean up requirement for input fuel in the fuel processing subsystem.

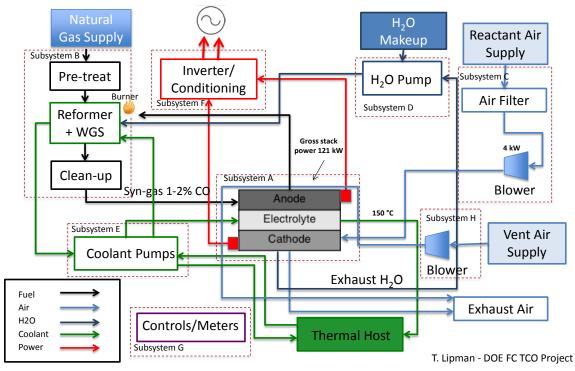


Figure 1.1. CHP with reformate fuel system schematic for 100kWe HT PEM FC system.

1.2. Functional Specifications

System and component lifetime assumptions are shown in Table 1.1 for CHP applications. These specifications are shared across the system power range. Overall system lifetime is assumed to be approximately 15 years currently and anticipated to increase to 20 years in the future (2015-2020 timeframe). Stack life is 10,000 hours in the near term and projected to double to 20,000 hours per industry and DOE targets. Subsystem component lifetimes vary from 5-10 years, with somewhat longer lifetimes expected in the future compared with the present.

Common properties:	<u>Near-Term</u>	<u>Future</u>	<u>Unit</u>
System life	15	20	years
Stack life	10000	20000	hours
Reformer life (if app.)	5	10	years
Compressor/blower life	7.5	10	years
WTM sub-system life	7.5	10	years
Battery/startup system life	7.5	10	years
Turndown Ratio	3 to 1	3 to 1	ratio
Expected Availability	96	98	percent
Stack cooling strategy	Liquid	Liquid	cooling

Table 1.1. Shared functional specifications for HT PEM CHP systems

Functional specifications by system size are shown in Table 1.2 for 1-250kWe system sizes. The current density of 0.23 A/cm² is based on an Advent Technologies specifications sheet. This necessitates about double the plate area of the corresponding LT PEM fuel cell size (Wei, et al. 2014). The physical size and weight is also about twice that of the LT PEM case. Waste heat range is expected to be in the 120-200°C range though the thermal efficiency will be highly site-specific and the values shown in Table 1.2 are upper estimates.

				Fuel Cell Size				
		1 kW	<u>10 kW</u>	50 kW	100 kW	250 kW		
	Unique Properties:						<u>Units:</u>	
<u>System</u>	Gross system power	1.28	12.6	62.6	121	305.8	kW	
	Net system power	1	10	50	100	250.0	kW (AC)	
	Physical size	0.7x0.45x0.5	2.4x1.8x1.0	2.9x4.2x1.8	2.9x4.2x3.6	5.8x4.6x4.5	m ³	
	Physical weight	110	1100	7040	14080	35200.0	kg	
	Electrical output	110V AC	480V AC	480V AC	480V AC	480V AC	Volts AC or DC	
	DC/AC inverter effic.	93%	93%	93%	93%	90.0	%	
	Peak ramp rate	0.12	1.20	6.00	0.372	0.9	kW/sec - size dep	
	Waste heat grade	150 C.	150	150	150	150.0	Temp. °C	
	Reformer efficiency	75	75%	75%	75%	0.8	%	
	Fuel utilization % (first pass)	80%	80%	80%	80%	0.8	%	
	Fuel utilization % (overall)	95%	95%	95%	95%	1.0	%	
	Fuel input power (LHV)	3.53	35	173	335	844.7	kW	
	Stack voltage effic.	51%	51%	51%	51%	51%	% LHV	
	Gross system electr. effic.	36%	36%	36%	36%	36%	% LHV	
also see fn->	Avg. system net electr. effic.	28%	29%	29%	30%	30%	% LHV	
	Thermal efficiency	52%	52%	53%	53%	55%	% LHV	
	Total efficiency	80%	81%	82%	83%	85%	Elect.+thermal (%)	
<u>Stack</u>	stack power	1.28	6.3	7.83	8.08	8.0	kW	
	total plate area	725	725	725	725	725	cm ²	
	GDL coated area	468	468	468	464	464	cm ²	
	single cell active area	426	426	426	423	423	cm ²	
	gross cell inactive area	41	41	41	41	41	%	
	cell amps	97.4	96.0	95.6	95	94.7	A	
	current density	0.23	0.23	0.22	0.23	0.22	A/cm ²	
	reference voltage	0.625	0.625	0.625	0.625	0.625	V	
	power density	0.143	0.141	0.140	0.141	0.140	W/cm ²	
	single cell power	60.9	60.0	59.7	59	59.2	W	
	cells per stack	21	105	131	136	136	cells	
	percent active cells	100	100	100	100	100	%	
	stacks per system	1	2	8	15	38	stacks	
Addt'l Parasi	Compressor/blower	0.05	0.5	3	4	10.0	kW	
	Other paras. loads	0.153	1.35	5.85	9.72	27.0	kW	
	Parasitic loss	0.20	1.85	8.85	13.72	37.0	kW	

Table 1.2. Functional specifications for HT PEM CHP systems with reformate fuel

Fuel utilization of 95% requires a fuel after-burner with fuel processor subsystem. GDE coated area is assumed to be 64% of total plate area (464/725 cm²) to account for manifolds and cooling channels, but this may be a conservative estimate, and single cell active area is assumed to be 9% lower than GDE coated area. Parasitic losses are assumed to be10% lower for HT PEM compared to LT PEM case due to simplification of system design. Precious metal catalyst loading is assumed to be 0.7mg Pt per cm². (Chapter 2 has further details on catalyst loading).

2. DFMA Manufacturing Cost Analysis

DFMA stack module cost analysis modeling assumptions and results are presented in this chapter for HT PEM fuel cell stacks designed for combined heat and power applications. Stack modules include the PBI membrane, gas diffusion electrode (GDE), MEA frame/seal, separator plates, and stack assembly module. The following sections discuss each stack module's process flows, bill of materials, and cost analyses. A description of the costing analysis can be found in the earlier LT PEM report and is described in the Appendix.

Each stack module has its own yield assumptions, but those modules that are based on mature manufacturing process or that are similar to LT PEM process modules have higher yield numbers. These higher yield numbers are based on manufacturing learning-by-doing over the past decades in making these components and due to the level of automation and quality control that is associated with established manufacturing processes such as compression molding of composite plates or the stamping process for metal plates.

2.1. Polybenzimidazol (PBI) based membranes

Great progress in fuel cell system performance has been achieved using polymeric membranes based on perfluorosulfonic acid (PFSA) such as Nafion® for conventional low temperature PEM fuel cells that operate at temperature below 80°C. However, these polymeric membranes are not suitable at relatively higher temperatures (>120°C) and hence are not suitable for high temperature PEM fuel cells (see Table 2.1 below). Table 2.1 also shows other membrane materials that can be used in high temperature PEM fuel cells. Polybenzimidazol (PBI) based membranes are among the best performing group of membranes that can work efficiently at temperatures exceeding 120°C, not only because of their stability at high temperatures, but also because they have very good proton conductivity above 100°C. PBI membranes do not require membrane humidification which is another important factor to consider in PEM fuel cell system design.

PBI-based high-temperature polymer-electrolyte membranes offer many advantages over other membrane technologies. Benefits include higher resistance to impurities than LT PEM (most notably carbon monoxide), faster electrochemical kinetics, and relatively simpler water and thermal management systems due to operational temperatures above 120°C (Schmidt and Baurmeister, 2008).

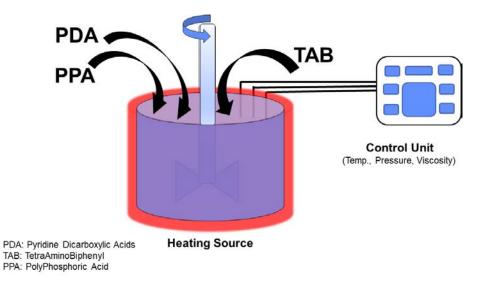
Membrane bill of materials (BOM) was determined based on several studies (e.g. Xiao, *et al.*, 2003; Xiao, 2005; Scanlon and Benicewicz, 2004) and tabulated in Tables 2.2-2.3. Table 2.2 summarizes first generation monomers used in making PBI membrane along with potential suppliers (Xiao, 2003); however, this early generation of PBI-based membranes were improved significantly through additions of some stronger and heat resistant monomers like phthalic acids in the second generation of PBI-based membranes (see Table 2.3).

Table 2.1 Some of the membrane technologies used in high temperature PEM fuel cells (Adopted
from Bose <i>et al.</i> 2011)

from Bose <i>et al.</i> 2011)			
Types of membrane	Operational temperature (°C)	Relative humidity (%)	Proton conductivity (S/cm)
Functionalized PDMS (APP 414)	130	100	0.072
SPES/BPO4 composite	120	#	0.038
SPFEK-SiO ₂ -HPMC hybrid membrane	120	50	0.0198
Disulfonated poly(arylene ether sulfone)/ZrP composite	130	100	0.13
Sulfonated polyimides	140	10-20	0.0005
	160	5-12	0.002
Nafion/ZrSPP composite	110	50	≥0.005
		98	≤0.05
PBI/ZrP composite	200	5	0.096
S-polyoxadiazole/mesoporous silica (MCM-41)	120	25	0.034
Krytox-Si-Nafion hybrid membrane	130	Ambient condition	1.72 X10 ⁻⁴
Nafion/sulfonated poly(phenylsilsesquioxane) (sPPSQ) nanocomposite	120	100	0.157
Nafion/silica (SBA-15)	140	10	8.52 X10 ⁻⁴
Heteropolyacid (HPA)/sulfonated BPSH composite	130	#	0.15
Polyimide Containing Pendant Sulfophenoxypropoxy Groups	120	100	1
poly(benzimidazole-co-aniline)	120	100	0.167
PPO/poly(styrene-b- vinylbenzylphosphonic acid)	140	100	0.28
Perfluorocyclobutyl containing polybenzimidazoles	140	Without humidification	0.12
polybenzimidazole (PBI) containing bulky basic benzimidazole side groups	180	Without humidification	0.16
Imidazole intercalated into sulfonated polyetherketone	120	Without humidification	0.01
membrane	200	Without humidification	0.02

Materials	Suppliers	Price
Pyridine dicarboxylic acids (2,4-,	Matrix Scientific	\$91 for 25 g
2,5-, 2,6- and 3,5- PDA)	Alpha Aeser Chemical Co.	\$212for 500 g
3,3′,4,4′-Tetraaminobiphenyl (TAB)	European suppliers	\$500 per kg
Polyphosphoric acid (115%)	Sigma-Aldrich Chemical Co.	\$60 for1 kg
Ammonia Hydroxide	Sigma-Aldrich Chemical Co.	\$340 for 6X2.5L
Distilled water	Sigma-Aldrich Chemical Co.	
Phosphoric Acid (Conc. 85% for doping)	Duda Energy	\$40 per gallon
Dimethylacetamide (DMAc)	Sigma-Aldrich Chemical Co. Alpha Aeser Chemical Co.	\$542 for 6L \$82.5 for 2.5L

Table 2.2 Bill of materials for first generation monomers


Table 2.3 Bill of materials for second generation monomers

Materials	Suppliers	Price
Isophthalic acid	Alpha Aeser Chemical Co.	\$103 for 5kg
Terephthalic acid	Alpha Aeser Chemical Co.	\$377 for 10kg
3,3',4,4'-Tetraaminobiphenyl (TAB)	European suppliers	\$500 per kg
Polyphosphoric acid (115%)	Sigma-Aldrich Chemical Co.	\$60 for1 kg
Ammonium Hydoroxide	Sigma-Aldrich Chemical Co.	\$253.5 for 6 L
N,N-DiMethylAcetamide (DMAc)	Sigma-Aldrich Chemical Co.	\$62.2 for 2 L

2.1.1. Process Flow of PBI-Based membrane

In the present model, we assumed that PBI-membrane is made via a casting process using slot-die coating machine (Harris *et al.*, 2010a). The synthesis of PBI-membrane is performed by combining a pyridine dicarboxylic acid (PDA) and a tetraamine (TAB) with PPA in a suitable reaction vessel. The reaction temperature is controlled by a programmable temperature controller and a heat bath during a ramp-and-soak procedure. Typical polymerization temperatures are approximately190–220°C for 16–24 hours (Fig. 2.1a). Under the appropriate reaction conditions, high molecular weight PBI polymer is produced. This polymer solution is then filtrated to get a dry powder which is then ground up in order to directly cast into films as part of a deposited ink formulation (see next section for details). Upon exposure to ambient moisture, PPA is hydrolyzed to PA to yield highly PA-

doped PBI membranes (Fig. 2.1b). After casting, the hydrolysis of PPA to phosphoric acid by moisture from the surrounding environment induces a sol-gel transition. A transition from the polymer solution state to a gel state is observed during the hydrolysis as PPA (a good solvent for PBI) is converted in situ to PA (a poor solvent for PBI). This sol-gel transition (see Fig. 2.2) results in a mechanically stable, highly conductive membrane that is capable of operating at high temperature without humidification of feed gases (Seel et al., 2009). In this way acid-doping levels as high as 20–40 mol PA per repeat unit of PBI can be achieved with consequently high conductivity (over 0.2 S cm–1) yet with acceptable tensile strength (of up to 3.5MPa) (Li et al., 2009). In general, PBI membranes with higher PA-doping levels produce membranes with higher proton conductivities (Seel et al., 2009).

(a)

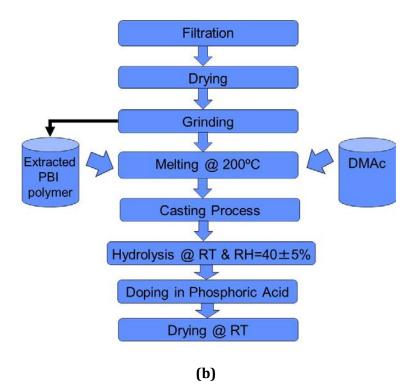


Figure 2.1. Process flow for making PBI-based membrane: a) mixing process; and b) subsequent process to make PBI/PPA powder that is used in the casting process

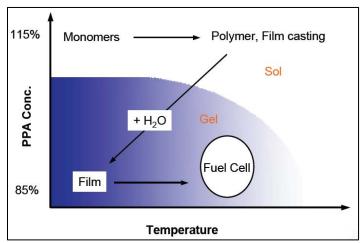


Figure 2.2. Hydrolysis and doping are made to get more stable membrane (Hydrolysis @T=25°C; RH=40±5%) (Seel et al., 2009)

Slot-die coating was assumed as a base-case for making PBI-based membrane (Harris et al., 2010). In this process, the polymeric materials are melted in the container and then fed through a regulator valve into the slot-die, which casts a precise amount of the molten material on the substrate film (see Fig. 2.3 for the schematic of this process). After that, the cast film is fed into the infrared dryer to get stable film which is then tested for pin holes, other defects, and thickness

uniformity. The final membrane is then doped in a phosphoric acid bath and wound into large spools and put on to a shelf for further curing at room temperature.

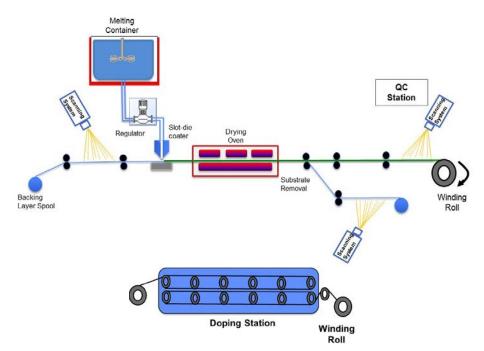


Figure 2.3. Schematic of the casting process and in situ quality control of PBI-based membrane

2.1.2. Casting Process Parameters

The slot-die casting process of viscous materials requires certain conditions to ensure a final product with the desired quality. In order to get a reproducible, high-quality product, the casting of PBI membranes needs to be done with the proper conditions in an appropriate "coating window" to eliminate various types of defects such as dripping, air entrainment, and break lines⁴ that might be formed during the casting process (Bhamidipati *et al.*, 2013). In the current study, we assumed the following parameters for the PBI casting process, determined through extensive research in the literature and previous studies:

- Membrane thickness: 100µm (4 mils)
- Line speed: variable speed based on production volume (see Fig. 2.4). Line speed is a critical point from both manufacturing and cost perspectives. Line speed is usually determined based on the processing requirements such as molten materials temperature, casting pressure, film thickness, viscosity, surface tension, dry content in the coating solution, desired dry thickness, etc. There may be limits to the attainable casting speeds but from a fundamental point of view the upper limit in coating speed is normally many meters per

⁴ Air entrainment and break lines are considered to be major defects encountered in cast PBI membranes during slot die coating, especially for high-viscosity solutions. At higher casting speeds, air bubbles get trapped between the substrate and the liquid film. In some cases, the air bubble is restricted to only a fraction of the total film thickness, while in other cases; the bubble extends all the way to the top of the film making a hole. Extending the coating speed beyond the air entrainment value may result in the formation of break lines. It has been found that as the coating speed increases, the originally straight contact line breaks into sawteeth structures and air bubbles eventually break up from the tip of these sawteeth (Bhamidipati *et al.*, 2013).

second. In the current analysis we assumed actual line speeds based on experimental work done by Bhamidipati *et al.*, (2013).

• Yield increases with production volume because of process learning and improved process control. Figure 2.5 shows yield values with the cast area. Low yield values were estimated for low production volumes and yield was assumed increase with increasing production volume due to learning-by-doing (e.g., a lower scrap rate of materials associated with set-up times).

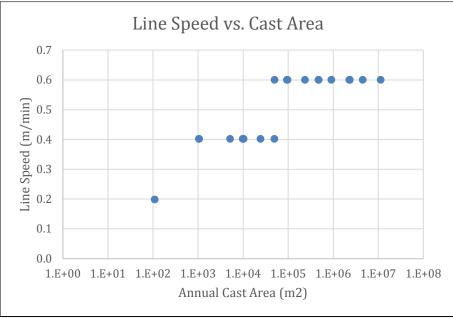


Figure 2.4. Line speed as a function of annual cast area

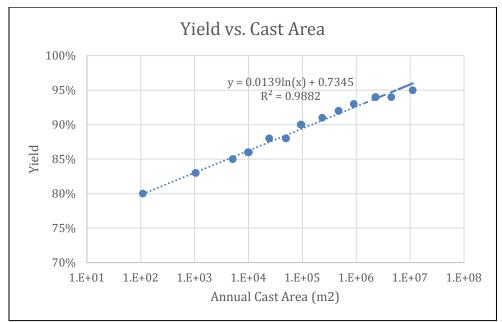
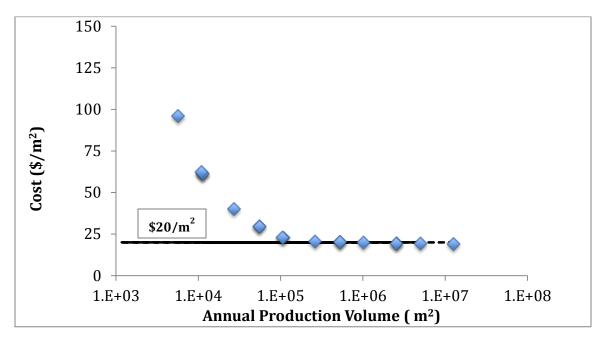



Figure 2.5. Yield assumptions with the annual production volume (in m²)

2.1.3. Cost Model Results for PBI-based membrane

Cost analyses were made using the cost modeling approach and assumptions described in Appendix A. Total cost (in \$/m²) for first and second generation polymeric materials are shown in Fig. 2.6a and Fig.2.6b, respectively. It is important to mention that there are no discounts in the cost of materials as a function of volume because these materials are assumed to be largely commodity-type materials. Final cost values are broken down into constituent factors to show capital, building, operational, labor and materials components as shown in Figures 2.7-2.8 for 10kWe and 100 kWe fuel cell systems, respectively. These figures show that cost is dominated by material cost at higher production volume. In contrast, cost is dominated by capital, scrap/waste and building cost at low production to overcome the problem of the under-utilization of equipment resources is to use a smaller slot-die coater for example, but this analysis targeted higher volume production.

(a)

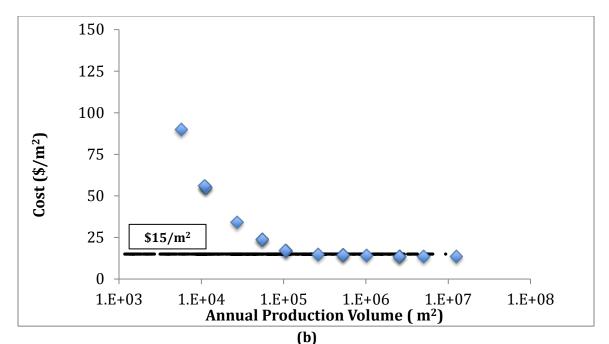
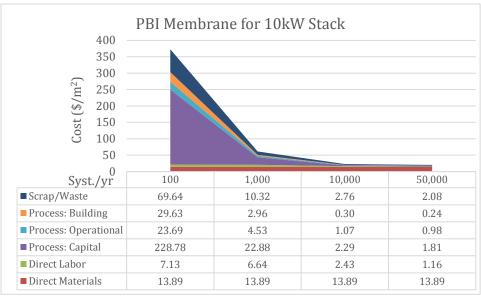



Figure 2.6. Membrane cost in $(\frac{m^2}{m^2})$ for PBI-based PEM based on: (a) 1st generation materials (Xiao et al., 2003); and (b) 2nd generation materials (Xiao et al., 2005).

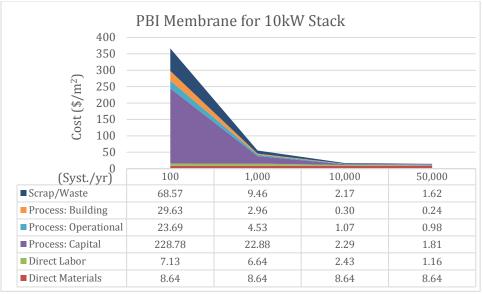
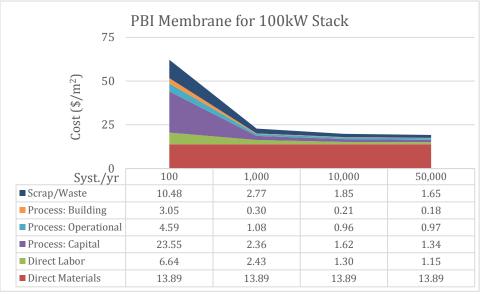
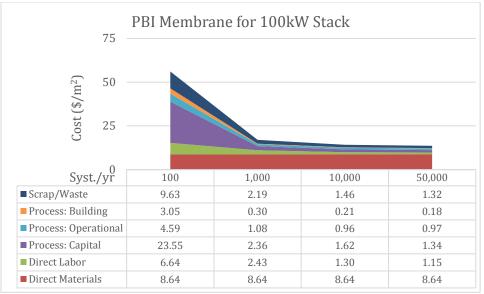




Figure 2.7. Cost breakdown for 10 kWe fuel cell system based on: (a) 1st generation materials and (b) 2nd generation materials

(a)

(b)

Figure 2.8. Cost breakdown for 100 kWe fuel cell system based on: (a) 1st generation materials and (b) 2nd generation materials

2.2. Gas Diffusion Electrode (GDE)

In the high temperature PEM fuel cell, the catalyst is commonly deposited on the gas diffusion layer (GDL) and therefore is called the gas diffusion electrode (GDE). Although catalyst layers can be deposited on the membrane to form catalyst coated membrane (CCM) or on the gas diffusion layer, the second approach is favored for HT PEM because of lower cost, less labor requirements, and improved yield (Manhattan Project, 2011).

2.2.1. Preparation of the GDEs impregnated with phosphoric acid

Fabrication of gas diffusion electrodes (GDEs) is made through slot-die coating process where slurries containing appropriate amounts of platinum catalysts or (slurries of platinum alloys). Slurries with the appropriate precious metal weight fractions were prepared by ultrasonic agitation for 20–40 min in a mixture of water and organic alcohols. These inks were coated onto the microporous layer of a GDL using slot-die coating technique followed by a drying step. The selection of catalyst material is governed by several factors such as cost, electrical activity and ability to withstand certain temperatures in some fuel cell applications. Initially, catalysts were made of platinum or other noble metals, as these materials have the ability to withstand the corrosive environment of the electrochemical cell. Later, these noble metals were dispersed over the surface of electrically conductive supporting materials (e.g. carbon black) to increase the surface area of the catalyst which in turn increased the number of reactive sites leading to improved efficiency of the cell. It was then discovered that certain alloys of noble metals exhibited increased catalytic activity, further increasing fuel cell efficiencies (Luczak, 1991). Some of these alloys are platinum-chromium and platinum vanadium. In addition, a ternary alloy catalyst containing platinum, cobalt and chromium was reported to have better efficiency by Luczak (1986)

in U.S. patent #4,613,582. The Pt/Cr/Co alloy loadings on the GDE are shown in Table 2.4 based on this patent.

The preparation of the platinum-chromium-cobalt alloy catalyst slurries to be deposited on the surface of the carbon paper was also adopted from the same UTC patent (U.S. patent #4,613,582). A brief description of the ink preparation method is provided in Appendix B.

Alloying Element	Composition (%)	Loading (mg/cm²)
Pt	79.8%	0.700
Cobalt	11.3%	0.099
Chromium	8.9%	0.078

Table 2.4. Platinum-Chromium-Cobalt allo	w used in makin	a ink churr	v for CDF
Table 2.4. Flatinum-Cinonnum-Cobait and	y useu ili iliakili	g mik siurr	y IOI GDE

Yield assumptions (per square-meter of GDE) are assumed to be between 90-99% depending on the annual production volume. Yield is assumed to improve with output volume in the slot-die coating process as a result of reduced amount of waste materials during set-up time and due to continuous learning that can be related to the annual production volumes in square meters. Note that "scrap" material is not discarded but the catalyst is recovered by shipping rejected material to a Pt recovery firm with the assumption that 90% of Pt material is recovered and the remaining 10% Pt is assumed to cover the cost of recovery.

2.2.2 Cost Model Results for Gas Diffusion Electrode

A cost model was developed for GDE using the same approach as that described in Appendix A. Slot-die coating process is assumed to be the base catalyst deposition method in this study where the catalyst layer is deposited on carbon paper. Total cost (in $/m^2$) final GDE cost and carbon paper cost are shown in Fig. 2.9. It can be clearly seen that cost is decreasing with the production volume (expressed in m^2 along x-axis) as a direct result of efficient use of equipment and materials. Cost breakdown is also shown in Fig. 2.10 for 10 kWe and 100 kWe fuel cell systems to emphasize the contribution of each cost components on the overall cost of the GDE. This figure shows that cost is greatly dominated by material cost at all production volumes (mainly Pt catalyst) followed by equipment cost as the next highest cost contributor.

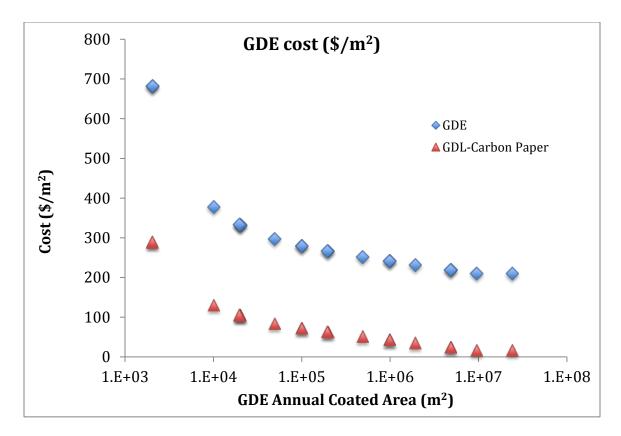
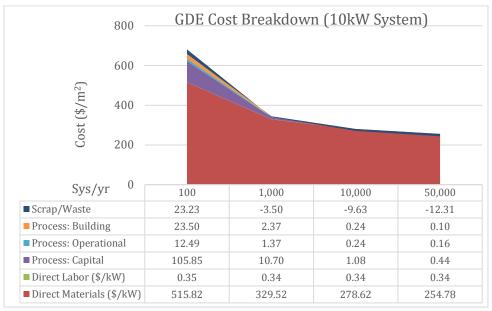
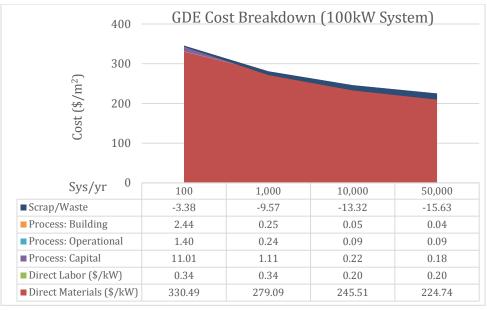




Figure 2.9. Gas diffusion electrode (GDE) cost along with carbon paper cost in $(/m^2)$ with annual production volumes

(b)

Figure 2.10. GDE cost breakdown for: (a) 10 kWe fuel cell system and (b) 100 kWe fuel cell system showing that cost is dominated by material cost (mainly the cost of platinum and carbon paper)

2.3. Membrane Electrode Assembly (MEA) Frame

The manufacturing process of the MEA frame is very similar to that of the LT PEM process flow. Essentially, three input rolls (GDL cathode, GDL anode, and membrane) and the frame film are hot pressed together and punched to the desired area. However, the materials for the frame and backing are different due to physical property requirements and the elevated operating temperature of the HT PEM FC system. The materials modeled for the MEA seal and backing for the high temperature system are polyimide and Viton respectively compared to the low temperature system that utilized polyethylene naphthalate (PEN) and fluorinated ethylene propylene (FEP). An outline of the manufacturing process flow is shown in Figure 2.11 while material costs are shown in Table 2.5.

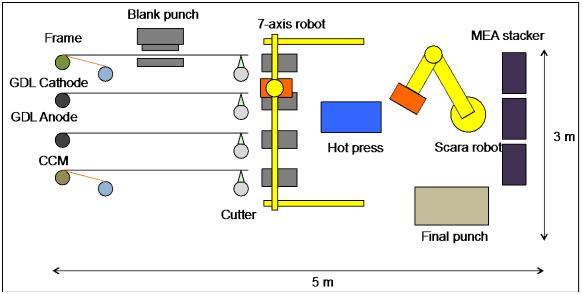
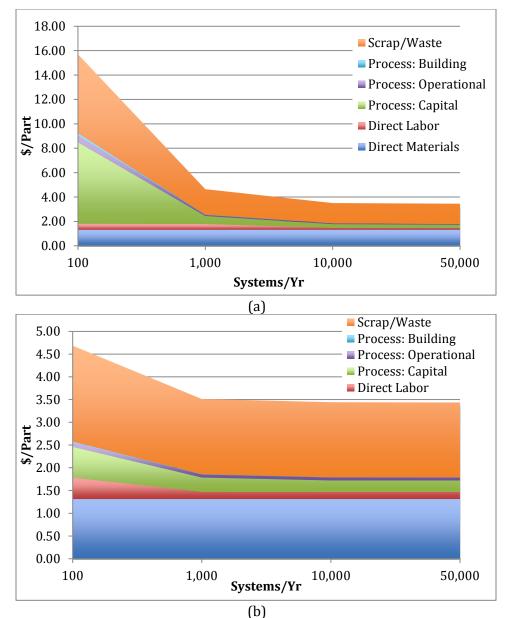
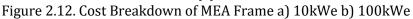


Figure 2.11. MEA Frame process flow


Table 2.5. MEA seal and backing material cost and comparison to the LT PEM system


Layer	Application	Material	Cost (\$/m²)
MEA Seal	HT PEM	Polyimide	10.00
	LT PEM	PEN	5.00
Backing	HT PEM	Viton	7.60
	LT PEM	FEP	10.00

2.3.1. MEA Frame Cost Model Results

Cost assumptions such as equipment cost, cycle time, process yield, line availability, set-up time, component design, and tooling footprint are identical to that of the LT PEM report and are documented in great detail (Wei et al., 2014).

Figure 2.12 shows the cost breakdown of the MEA frame. At low production volumes, capital cost is the largest cost contributor. At high production volumes, direct materials and scrap dominate the overall frame cost. This is the expected trend since high line utilization at high volumes effectively distributes the initial capital cost over more parts. Material cost is therefore the cost driver at high volume. Scrap is large throughout all production volumes owing to the fact that all upstream work is lost in a defective framed MEA. In addition, it is seen that there is no reduction in scrap cost after reaching volumes of 10,000 system/yr for the 10kWe system and 1,000 systems/yr for the 100kWe system. This is owing to the assumption that a maximum yield (99.9%) is reached at lower production volumes to protect against losing a large portion of upstream value. The total frame cost at high production volume is about \$3.45 per part. The numerical breakdown is shown in Table 2.6.

Final Cost	15.70	4.65	3.50	3.45
Scrap/Waste	6.47	2.09	1.65	1.65
Process: Building	0.17	0.02	0.00	0.01
Process: Operational	0.58	0.10	0.07	0.06
Process: Capital	6.68	0.66	0.30	0.26
Direct Labor	0.49	0.47	0.16	0.16
Direct Materials	1.31	1.31	1.31	1.31
Volume (Systems/yr)	100	1,000	10,000	50,000
Table 2.6. Cost Breakdown of MEA Frame (a) TORWE (b) TOORWG				

Table 2.6. Cost Breakdown of MEA Frame (a) 10kWe (b) 100kWe

Volume (Systems/yr)	100	1,000	10,000	50,000
Direct Materials	1.31	1.31	1.31	1.31
Direct Labor	0.47	0.16	0.16	0.16
Process: Capital	0.67	0.31	0.25	0.25
Process: Operational	0.10	0.07	0.06	0.06
Process: Building	0.02	0.01	0.01	0.01
Scrap/Waste	2.11	1.65	1.65	1.64
Final Cost	4.69	3.51	3.44	3.44
(b)				

Figure 2.13 shows a comparison of frame cost of the HT PEM system to that of the low temperature PEM system. It is seen that the high temperature PEM frame is about \$1.50 more expensive per MEA to manufacture than the low temperature PEM frame. This is due to the difference in material cost and larger frame footprint.

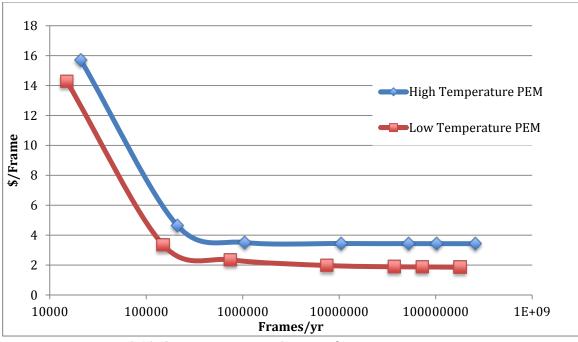


Figure 2.13. Comparison to MEA Frame for Low Temperature PEM

2.4. Separator Plates

In the low temperature PEM fuel cell, a bipolar plate is used to supply reactants to each individual cell while also providing cooling channels. The cooling channels are created by adhering two half plates together. The low temperature half plate design is shown in Figure 2.14.

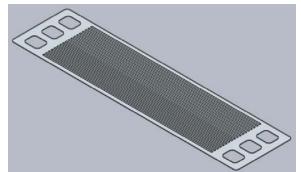


Figure 2.14. Bipolar Half Plate for Low Temperature PEM Fuel Cells

In a high temperature PEM fuel cell, cooling is not done in every cell because of the higher temperature and greater efficiency of heat dissipation. Typical HT PEM stacks have cooling cells every 5th to 8th cell (Kanuri, 2011), and this analysis assumes a low-end frequency of every 5th cell. Since cooling is needed every fifth cell, four of every five cells contain a single half plate (Figure 2.15) while one of every five cells contain a full bipolar plate (BPP) (Figure 2.16). In other words, compared to the low temperature case, there are 40% less half plates. This setup is shown in Figure 2.17. Note that in order to stay consistent with previous work on low temperature PEM fuel cells, a plate with reservoir channels on both sides is termed a half plate (HAP). Therefore, a plate with reservoir channels on one side and flat on the other is a referred to as a quarter plate.

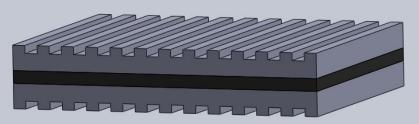


Figure 2.15. Half Plate with Separator Layer

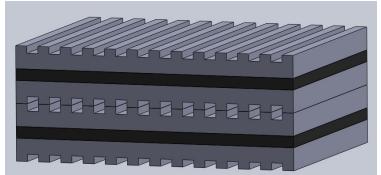


Figure 2.16. Plate Configuration for Cooling Cells

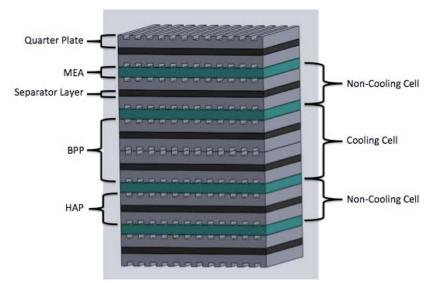


Figure 2.17. HT PEM fuel cell stack configuration

<u>Plate Design</u>

Previous work for LT PEM fuel cells utilized injection molded composite plates for CHP applications and metal plates for backup power applications. Both processes were ruled out for this analysis. Process materials for injection molding are not compatible with HT PEM operating temperatures, and the concern with metal plates is lack of sufficient corrosion protection over the full stack lifetime.

This work adopts compression molded composite plates since the thermosetting materials that are required for higher temperature operation are compatible with the compression molding process. In particular, two designs are considered. One of which is a process that molds a half plate in one step (Figure 2.18) and another that molds two quarter plates and combines them into a half plate by compressing a separator layer between them (Figure 2.15). The latter is a process adopted from a report published by United Technologies Corporation (Remick 2010) and a number of patents (Dettling 1985, Breault 1990, Roche 1993, Breault 1980) and has been chosen for the baseline process flow for the high durability and long lifetime requirement needed in CHP applications. The fundamental reason behind the application of the separator layer is to create a barrier that prohibits phosphoric acid migration between cells.

Compared to both of the manufacturing processes considered in the low temperature work, compression molding has a much longer cycle time, thus driving the cost per HAP higher. Additional cost is added due to the increased cell area. Half plate dimensions based on the functional specs in Table 1.2 are the following

- Width=20cm, length=36.25cm, and thickness=0.15cm.
- There are 54 channels of width=1.5mm and depth=1.5. Also, there are 6 manifolds of area 7.5cm².

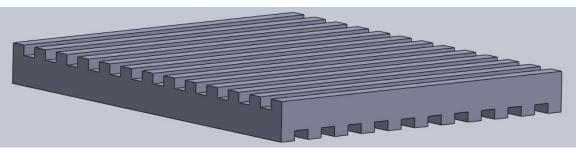


Figure 2.18. Simplified HAP Design

Plate Manufacturing:

A wet-lay compression molding process has been adopted from US Patent 2004/0229993 A1 and US 7,365,121 B2. There are also a number of papers published regarding this process e.g., Haung (2005), Cunningham (2007), and Cunningham (2007).

The material breakdown of each quarter plate is assumed to be 63% graphite, 10% carbon, 2% fiber glass, and 25% phenelic resin. These materials are poured into a water filled tank where they are mixed into a slurry for 15 minutes. Note that batch size is dependent on the process rate. Next, the slurry mixture is pumped over a sieve screen that is used to drain the water. The desired amount of material is then located into a form box and a conveyer belt pulls this form box away from the remaining material into a heated oven. The mixture is fed through the oven at 300°C.

A wet-lay sheet is then located into a hydraulic press. The mold is manufactured so that plate along with the reservoir channels and manifolds are formed in one step. The mold is heated to 300° C and compressed at 1,000psi for 10 minutes. After the 10 minutes, the mold cannot be reopened until the temperature drops. The cool down time is assumed to be 5 minutes. This completes the quarter plate fabrication process.

The last step is to form a half plate via another hydraulic press process. A quarter plate is located in a mold where a flouropolymer separator layer is applied to the flat surface of the quarter plate. FEP teflon has been chosen for the purpose of this study with a loading of 0.4g/in². A second quarter plate is then located adjacent to this separator layer. Lastly the quarter plate-separator layer-quarter plate is compressed at 300psi and 300C for 10 minutes and allowed to cool for 5 minutes. The resulting product is one HAP. The complete manufacturing process is outlined in Figure 2.19.

Graphite Particles, Carbon Fibers, and Phenolic Resin

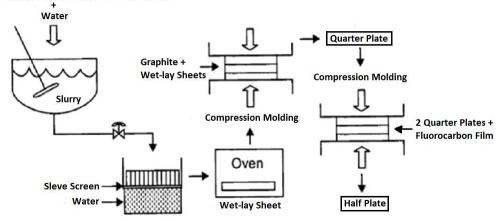


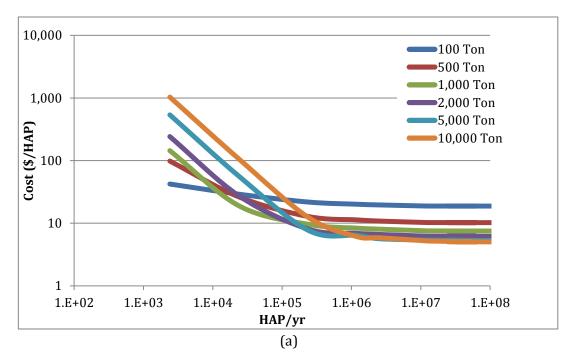
Figure 2.19. Wet-Lay Compression Mold Diagram (Baird, 2004)

For the 100 ton manual press, process yield varies between 80% and 90% while line availability varies between 85% and 95%. For the automated presses, the same assumption for line availability is applied, however, the process yield is now capped at 99.5% due to the consistent nature of automated processing. Note that the low percentage assumption is taken at volumes less than 100,000 HAP/yr while the high percentage assumption is taken at volumes greater than 10,000,000 HAP/yr.

Cost Analysis Assumptions:

As annual production increases larger press sizes are used to make up for the large cycle time. The hydraulic press is the largest contributor to capital cost, which is also the largest contributor to the overall cost. The capital cost of each press is shown in Table 2.7. Note that the 100-ton press does not scale linearly with the other presses because it is assumed to be fully manual operated while the larger size presses are automatically operated with platen heaters included in the cost. Less cost intensive equipment is shown in Table 2.8.

Press Size (Ton)	Cost (\$)	
500	500,000	
1,000	1,000,000	
2,000	2,000,000	
5,000	5,000,000	
10,000	10,000,000	


Table 2.7. Cost estimate of Hydraulic Presses

Component	Automatic Lines	Manual Lines
Stirrer	2500	50
Pulper	3700	2387
Pump	2500	200
Head Box	3000	100
Stirrer	2500	50
Sieve Screen	400	100
Continuous Roller	10000	500
Vacuum	5000	500
Oven	165000	500
Platen Heaters	0	500
Inspection	200000	0

Table 2.8. Equipment cost broken down by module (\$)

2.4.1. Cost Model Results for the Separator Plate

The HAP manufacturing process was analyzed in two phases. The first phase contains all steps upstream to a resulting quarter plate and the second phase contains all downstream steps. The cost curves associated with using different size hydraulic presses are shown in Figure 2.20 for both phases.

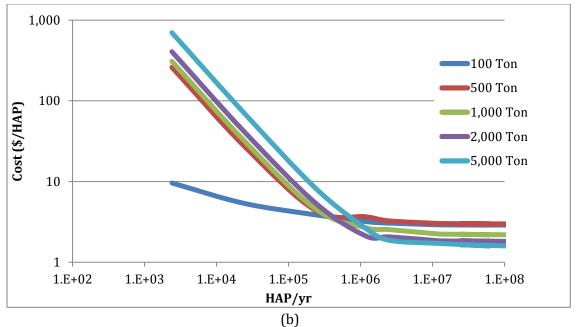
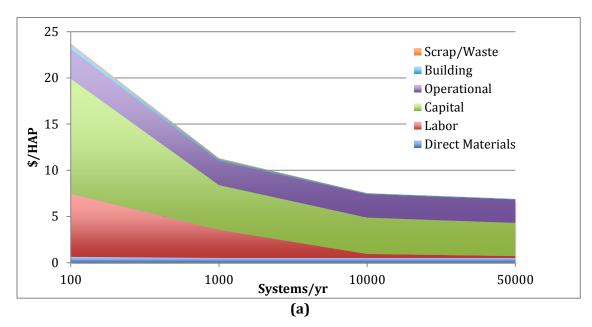


Figure 2.20. Cost vs. Production Volume for Selected Press Sizes (a) Phase 1 (b) Phase 2


The total cost of producing a HAP is derived by adding the optimum cost (lowest curve in Figures 2.20) for each phase at given production volumes. The resulting cost and optimum press size selections are shown in Table 2.9.

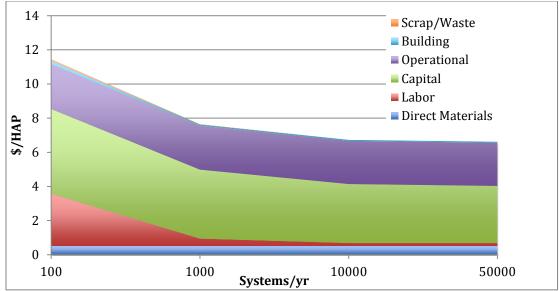

Size	Systems/yr	\$/Plate	Primary	Secondary
			Press	Press Size
			Size	(Tons)
			(Tons)	
1	100	51.86	100	100
-	1000	24.25	1,000	100
	10000	11.52	5,000	100
	50000	8.21	10,000	2000
10	100	23.70	1,000	100
	1000	11.30	5,000	100
	10000	7.52	5,000	5000
	50000	6.91	10,000	5000
50	100	16.83	1,000	100
	1000	8.02	10,000	2000
	10000	6.91	10,000	5000
	50000	6.62	10,000	5000

Table 2.9. Cost Results for HAP with Optimum Press Selection

100	100	11.45	5,000	100
	1000	7.64	5,000	5000
	10000	6.73	10,000	5000
	50000	6.62	10,000	5000
250	100	8.66	10,000	1000
	1000	7.20	10,000	5000
	10000	6.63	10,000	5000
	50000	6.61	10,000	5000

The cost breakdown for the 10 and 100 kWe systems is shown in Figure 2.21. It is seen that capital cost is the largest contributor at all production volumes. This is due to the long cycle times associated with compression molding that cannot be avoided with this process. At low volumes (10kWe, 100 and 1,000 systems) it is seen that labor is the second largest cost contributor. This is a result of the need for manual labor to operate the 100-ton press in phase 2. As the production volume increase, the transition to automated equipment is made and operational cost then becomes the second largest cost contributor. The numerical breakdown is seen in Table 2.10. For the 10 kWe system, cost ranges from \$23.70/HAP to \$6.91/HAP while the 100kWe system yield cost from \$11.45/HAP to \$6.62/HAP.

(b)

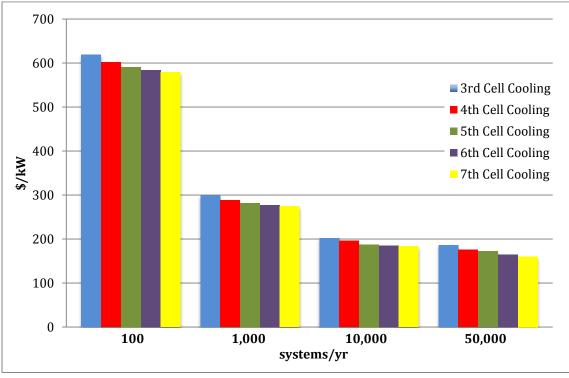

Figure 2.21. Cost Breakdown of HAP (a) 10kWe (b) 100kWe Table 2.10. Cost Breakdown of HAP (a) 10kWe (b) 100kWe

Table 2.10. Cost brea	Kuowii oi i	1AP (a) I		UUKWE
Volume	100	1,000	10,000	50,000
Direct Materials	0.63	0.53	0.52	0.52
Direct Labor	6.83	3.03	0.42	0.20
Process: Capital	12.46	4.84	3.93	3.59
Process: Operational	3.17	2.63	2.57	2.54
Process: Building	0.47	0.19	0.06	0.06
Scrap/Waste	0.13	0.10	0.02	0.00
Final Cost	23.70	11.30	7.52	6.91
	(a)			
Volume	100	1,000	10,000	50,000
Direct Materials	0.53	0.52	0.51	0.51
Direct Labor	3.04	0.43	0.18	0.17
Process: Capital	4.97	4.04	3.44	3.35
Process: Operational	2.63	2.58	2.53	2.53
Process: Operational Process: Building	2.63 0.19	2.58 0.06	2.53 0.06	2.53 0.06
Process: Building	0.19	0.06	0.06	0.06

A direct comparison to the LT PEM plates cannot be made due to stack design difference. However, qualitatively speaking, the high temperature PEM plates are more expensive due to higher cycle times of compression molding compared to injection molding and the addition of a separator layer.

2.4.2. Sensitivity Analysis for HAP

An assumption made in cost modeling of the separator plates is that cooling is done every 5th cell. This assumption was derived from industry input and literature. Figure 2.22 shows a sensitivity of plate cost versus the frequency of cooling cells. Here, it is seen that the cooling frequency does not have a large effect on the cost of the plates.

(a)

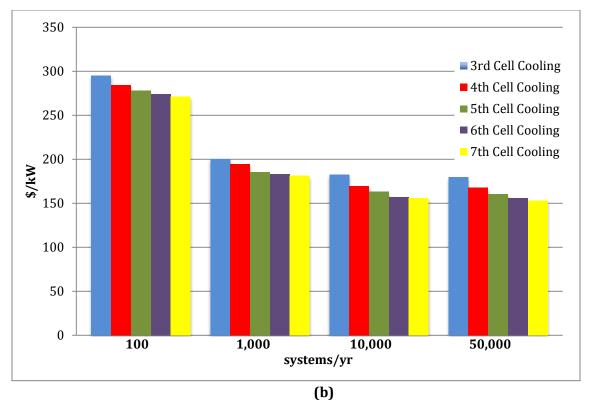


Figure 2.22. Sensitivity analysis of the cooling plate as a function of number of cooling plates per stack and annual production volume for: (a) 10kWe FC system; and (b) 100kWe FC system

The pressure applied by the hydraulic press to the plates is another sensitivity that was analyzed. It is anticipated that this parameter has a large influence on the cost in the following way. A decrease in molding pressure leads to an increase in the number of plates that can be molded in a single pressing operation which leads to a decrease in the number of presses needed thus resulting in lower capital cost. Figure 2.23 shows this sensitivity. At high volumes the cost per half plate falls from \$6.61 to \$4.71 when molding pressure in decreased by 50%.

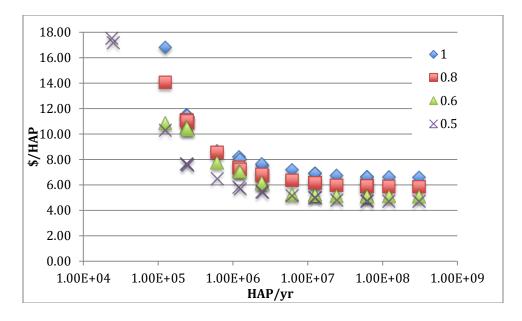


Figure 2.23. Sensitivity analysis for compression molding pressure requirement (the legend refers to the multiplication factor of the nominal plate molding pressure)

2.4.3. Simplified Half Plates

As previously mentioned, the single step molded half plate was not used as the baseline process flow due to questions in durability for long lifetimes in CHP systems. Although this was not used for final calculations, it is worthwhile to note the cost comparison of the simplified plates vs. the separator plates. This is shown in Figure 2.24.

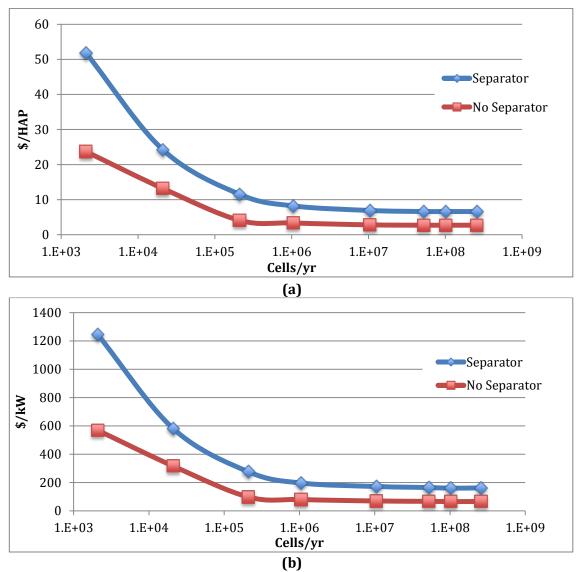


Figure 2.24. Cost breakdown of plates as a function of production volume (a) \$/HAP (b) \$/kWe

It is seen that the simplified HAP design is significantly cheaper than the separator layer design. Low volume production (1kWe, 100 systems/yr) yields a separator plate cost of \$1,245/kWe and a

simplified design of \$569/kWe. At high volumes (250kWe, 50,000 systems/yr), the separator plate cost is \$163/kWe while the simplified design is \$67/kWe.

2.5. Stack Assembly Process

Stack assembly is assumed to be the same process flow used for the previous low temperature PEM work. The process flow is outlined in Figure 2.25.

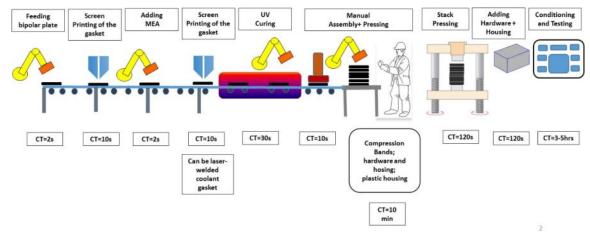
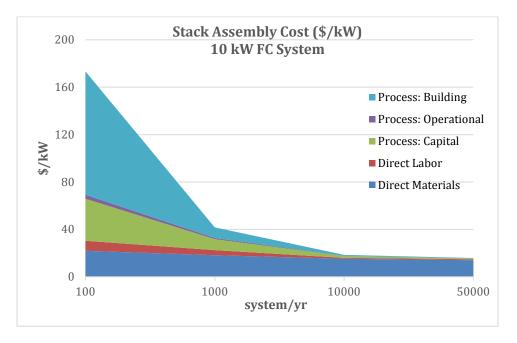



Figure 2.25. Process flow for semi-automatic assembly line

2.5.1. Stack Assembly Results

At low volumes (e.g. 10kWe at 100 systems/year), building cost makes up the largest portion of the overall cost while capital cost is also large. This can be accounted by the large assembly line footprint and low line utilization. As the production volume increases, so does the line utilization thus making direct materials the largest cost contributor. This relationship is shown in Figure 2.26.

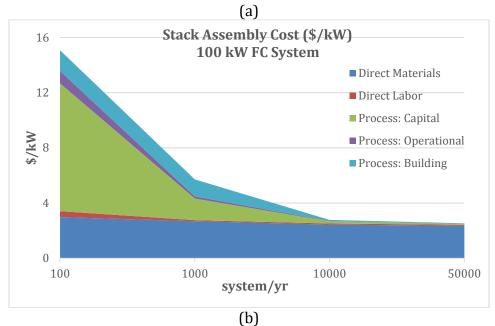
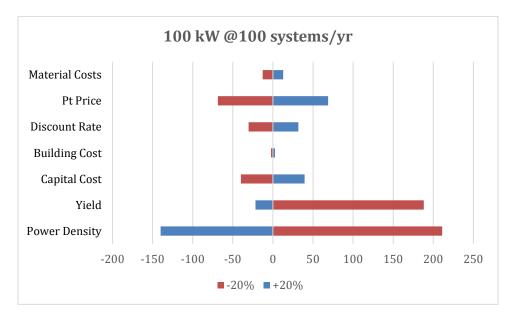
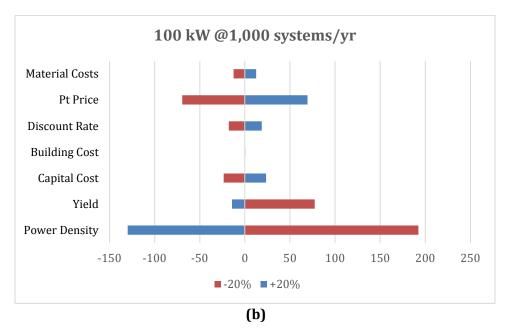
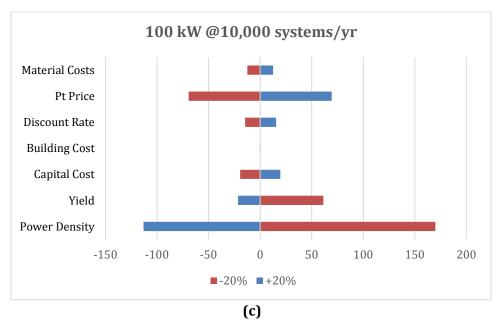



Figure 2.26. Cost Breakdown of Assembly (a) 10kWe FC system; and (b) 100kWe FC system


2.6. Sensitivity Analysis


Sensitivity analysis was done for 100kWe systems at different production volumes (as shown below in Figure 2.27). The impact of changing several parameters on the stack cost is calculated for a $\pm 20\%$ change in the sensitivity parameter being varied. Power density and process yield tend to be the most sensitive parameters that change the cost of the stack, followed by Pt price and capital cost which also have significant effect on the stack cost at all production volumes.

At low volume, overall yield, capital cost and power density are the largest contributing factors, while at higher production volumes the cost is more sensitive to the changes in the process yield and power density. Sensitivity analyses for stack modules are included in Appendix B.

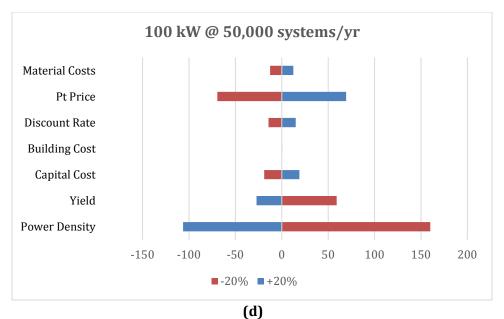


Figure 2.27. Sensitivity analysis plots for the stack cost. Plots show equivalent area for 100 kWe system expressed in (\$/kWe) at different annual production rates: (a) 100 system/year; (b) 1,000 system/year; (c) 10,000 system/year; and (d) 50,000 system/year. (Note: "Material Costs" exclude Pt cost)

3. Balance of Plant and Fuel Processor Cost

Balance of plant (BOP) component and cost analysis done for HT PEMFC combined heat and power (CHP) systems with reformate fuel. Several system capacities were analyzed (1, 10, 50, 100, and 250kWe) at various annual production volumes (100, 1000, 100,00 and 50,000 systems per year). The BOP analysis is based on the earlier LT PEM report (Wei et al., 2014) with system modifications and simplifications appropriate for the HT PEM technology.

3.1 BOP Costing Approach

The general approach is a bottom-up costing analysis based on the system designs described above using existing LT PEM and phosphoric acid fuel cell systems⁵, industry advisors, and various FC system specification sheets for data sources. There are very few to no actively operating HT PEM CHP systems, so other technologies were consulted and adopted to the HT PEM case. Methods of determining the representative components found in this model range from inspection of existing stationary fuel cell systems, information gathered through surveys of industry partners, discussions and price quotes with vendors, and utilization of components used for common but similar functions in other applications. Thus, the system represented here reflects the authors' best assessment of existing or planned systems but does not necessarily capture all system that is exactly the same as that described here.

The BOP is divided into six subsystems or subareas listed below:

- 1. Fuel Subsystem
- 2. Air Subsystem
- 3. Coolant Subsystem and Humidification Subsystems
- 4. Power Subsystem
- 5. Controls & Meters Subsystem
- 6. Miscellaneous Subsystem

BOP costing is based on component inventory based on the CHP system diagram, component costs, and earlier work on low temperature PEM systems (Tables 3.1 and 3.2). Non-fuel processor BOP costs assume purchased components while fuel processor costing (Table 3.3) is based on earlier bottom-up cost analysis by Strategic Analysis (James 2012). The HT PEM BOP and FP costs are slightly lower (10-15%) than LT PEM BOP and FP due to system simplifications for HT PEM compared to LT PEM. These include greater CO tolerance of the stack, no air slip to anode, and no stack humidification required.

⁵ In particular, balance of plant study was done on two CHP systems in the field: (1) the Ballard 1.1MWe ClearGen® system (LT PEM) installed in Torrance, CA and (2) a 5kWe Doosan CHP system (PAFC) installed in Oakland, CA. More details on the Ballard installation can be found in Wei et al. (2014).

Systems/Year		100	1,000	10,000	50,000
Subsystem 1: Fuel	Fuel Processor	6384	5295	4641	4345
	Air Compressor				
	Radiator				
	Manifolds				
	Air Piping				
	Air Subsystem Total	1187	950	861	740
	Coolant Tank		•		
	Coolant Pump Motor				
	Coolant Piping				
Subsystem 3: Coolant	Heat Exchanger (water-to-water)				
	Heat Exchanger (water-to-air)				
	Coolant Subsystem Total	2208	1769	1419	1244
	Power Inverter		1	1	1
	Braking Transistors				
	Transformer				
	Power Supply				
	Relays				
	Switches				
Subsystem 4: Power System	Fuses				
	НМІ				
	Bleed Resistor				
	Ethernet Switch				
	Power Cables (2W and 4W)				
	Voltage Transducer				
	Power Subsystem Total	4864	4223	3586	3103
	Variable Frequency Drive		•		
	Thermosets				
	CPU				
Subsystem 5: Controls/Meters	Flow Sensors				
	Pressure Transducer				
	Temperature Sensors				
	Hydrogen Sensors				
	Sensor Heads				
	Controls Subsystem Total	2091	1708	1391	1204

Table 3.1. Balance of plant analysis for 10 kWe HT PEM fuel cell system

	Wiring				
	Enclosure				
	Fasteners				
	Fire Detection Panel				
	Misc. Components Total	3012	2616	2326	1775
Tatal DOD Cost	\$/system	19750	16560	14230	12410
Total BOP Cost	\$/kWe	1975	1656	1423	1241

Table 3.2. Balance of plant analysis for 100 kWe HT PEM fuel cell system

Systems/Year 100 1,000 10,000 50,00						
Subsystem 1: Fuel Fuel Processor		23056	20328	18920	18216	
	Air Compressor	23030	20520	10520	10210	
	Air Pump Motor	_				
	Radiator	_				
	Air Piping					
	Manifolds					
	Air Subsystem Total	4196	3330	3121	280	
	Coolant Tank					
	Coolant Pump Motor	1				
	Coolant Piping					
Subsystem 3: Coolant	Heat Exchanger (water-to-water)					
	Heat Exchanger (water-to-air)					
	Coolant Subsystem Total	11088	9208	7786	711	
	Power Inverter		•			
	Braking Transistors					
	Transformer					
	Power Supply					
	Relays					
	Switches					
Subsystem 4: Power System	Fuses					
	НМІ					
	Bleed Resistor					
	Ethernet Switch					
	Power Cables (2W and 4W)					
	Voltage Transducer					
	Power Subsystem Total	27166	24455	21353	1826	
	Variable Frequency Drive					
Subsystem 5: Controls/Meters	Thermosets					
	CPU					

	Flow Sensors				
	Pressure Transducer				
	Temperature Sensors				
	Hydrogen Sensors				
	Sensor Heads				
	VPN				
	Controls Subsystem Total	12215	9935	8086	7173
	Tubing				
	Wiring				
Subsystem 6: Misc. Components	Enclosure				
oubsystem of mise, components	Fasteners				
	Fire Detection Panel				
	Misc. Components Total	7590	6097	4908	4395
	\$/system	85300	73400	64200	58000
Total BOP Cost	\$/kWe	853	734	642	580

Table 3.3. summarizes cost of the fuel processor in (\$/kWe) based on earlier work by SA.

	Annual production volume (systems/yr)					
FC system size	100	1000	10000	50000		
1 kWe	3730	2871	2438	2241		
10 kWe	638	530	464	435		
50 kWe	258	223	204	195		
100 kWe	231	203	189	182		
250 kWe	198	179	171	165		

Table 3.3. Fuel processor costs in \$/kWe.

4. Fuel Cell System Direct Manufacturing Costing Results

4.1. HT PEM Fuel Cell System Costing Results

System costing results are shown below for CHP systems with reformate fuel at 10kWe and 100 kWe system sizes. These represent a synthesis of system designs and functional specifications, DFMA costing analysis for FC stack components, and the BOP costing discussion from the preceding chapters. Two sets of plots are shown: (1) overall system costs per kWe as function of production volume (100, 1000, 10000, and 50000 systems per year) as shown in Figure 4.1, and (2) a breakout of the FC stack costs as a percentage of overall costs as shown in Figure 4.2. Additional cost plots can be found in Appendix C. It is important to distinguish direct cost numbers representing direct manufacturing (or purchased parts for BOP) and "customer cost" numbers, which include corporate markups such as profit margin, G&A, sales and marketing, warranty costs, etc. Typical markups are expected to about 40% to 60% for the final "factory gate" price, not including shipping to the customer location. A final cost component is installation costs and other fees, which include site installation costs, permitting fees, and any other fees.

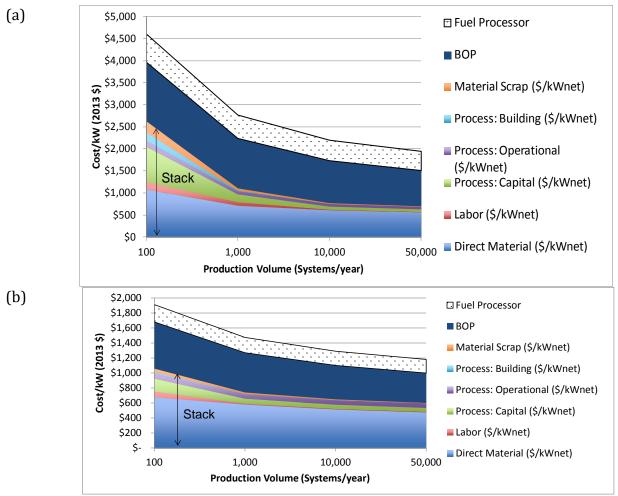
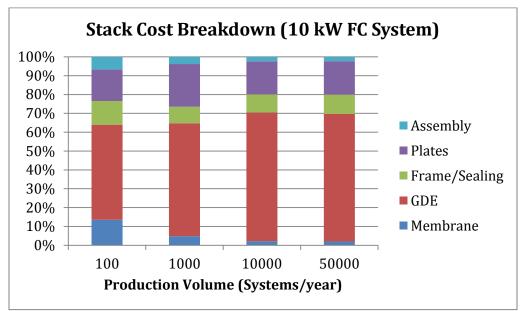



Figure 4.1. System cost vs annual production volume for (a) 10kWe and (b) 100kWe HT PEM CHP system with reformate fuel.

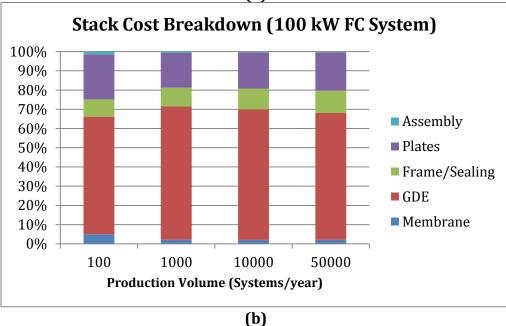


Figure 4.2. Stack cost breakdown for: a) 10kWe; and b) 100kWe fuel cell system

Table 4.1 summarizes fuel cell system cost broken out by stack, BOP and fuel processer.

		Annu	al production v	olume (syst./yr)
	FC system size	100	1000	10000	50000
	1 kWe	16102	2843	1276	937
Stack Cost	10 kWe	2629	1108	771	701
	50 kWe	1290	805	688	638
	100 kWe	1059	741	649	601
	250 kWe	889	705	628	610
	FC system	100	1000	10000	50000
	size				
	1 kWe	11065	9050	7674	6744
BOP and Fuel	10 kWe	1974	1656	1423	1241
Processor	50 kWe	1076	934	818	718
summary	100 kWe	853	734	642	580
	250 kWe	730	645	574	511
	FC system size	100	1000	10000	50000
	1 kWe	27167	11893	8950	7681
	10 kWe	4603	2764	2194	1942
Fuel Cell System Cost	50 kWe	2366	1739	1506	1356
System Cost	100 kWe	1912	1474	1290	1181
	250 kWe	1619	1350	1202	1121

Table 4.1. HT PEM fuel cell system cost summary (in \$/kWe)

 Table 4.2. Cost reduction of the HT PEM fuel cell system as a function of the annual production

 volume

		Annual production volume (syst./yr)			
	FC system size	100 to 1000 syst./yr	1000 to 10000 syst./yr	10000 to 50000 syst./yr	
Stack Cost	1 kWe	82%	55%	27%	
	10 kWe	58%	30%	9%	
	50 kWe	38%	15%	7%	
	100 kWe	30%	12%	7%	
	250 kWe	21%	11%	3%	
	FC system size	100 to 1000 syst./yr	1000 to 10000 syst./yr	10000 to 50000 syst./yr	
	1 kWe	18%	15%	12%	
BOP and	10 kWe	16%	14%	13%	
Fuel Processor	50 kWe	13%	12%	12%	
summary	100 kWe	14%	13%	10%	
	250 kWe	12%	11%	11%	

	FC system size	100 to 1000 syst./yr	1000 to 10000 syst./yr	10000 to 50000 syst./yr
	1 kWe	56%	25%	14%
Evel Cell	10 kWe	40%	21%	11%
Fuel Cell System Cost	50 kWe	27%	13%	10%
by stem dost	100 kWe	23%	12%	8%
	250 kWe	17%	11%	7%

Table 4.3. Stack cost as percentage of system costs (\$/kWe)

	Annual production volume (sys/yr)					
FC system size	100	1000	10000	50000		
1 kWe	59%	24%	14%	12%		
10 kWe	57%	40%	35%	36%		
50 kWe	55%	46%	46%	47%		
100 kWe	55%	50%	50%	51%		
250 kWe	55%	52%	52%	54%		

Discussion of System Costs

Note that system costs above are direct costs only and do not include any corporate markups or installation costs. For 10kWe CHP systems, costs at low volume (100 systems/year) are about \$4600/kWe and about \$1950/kWe at high volume (50,000 system/year). For 100kWe CHP systems, costs at low volume (100 systems/year) are about \$1900/kWe and about \$1200/kWe at high volume (50,000 system/year).

Stack costs for both the 10kWe and 100kWe system size are dominated by the GDE, with the GDE constituting about 50-70% of the total stack cost across all production volumes. The plates are the second most costly stack component comprising from 17-23% of total stack cost (Figure 4.2).

Overall system costs vs. volume are reduced more for the 10kWe case than the 100kWe case. The 10kWe case is on a steeper portion of the cost-versus-volume curve for stack components with a large reduction in stack costs with increasing volume due to greater tool utilization. The 100kWe case is on a flatter portion of the stack cost curve and thus has lower cost reduction versus volume. In moving from 100 to 1000 systems, the stack cost declination is about two to four times greater than the BOP and Fuel Processor (Table 4.2). This is due to the cost reductions from greater tool utilization and automated processes for the fuel cell stack whereas the BOP components are largely assumed to be purchased commodity products with less cost reduction potential.

Stack costs as a percentage of total costs are fairly flat at 50-55% of total system cost for the 100kWe system size, but stack cost is reduced from about 57% of total system cost to about 36% for the 10kWe system at high volume. This is mainly due to the larger relative cost reduction in stack costs for the 10kWe system size.

The 1kWe system at low volume has artificially high cost due to the assumption of vertically integrated production and extremely low tool utilization at these low volumes. A more realistic cost estimate would rely on more in-house manual labor rather than automated equipment, more purchased components, and potentially outsourced assembly. Since the focus of the study is higher volume production, the research team did not optimize the low volume 1kWe cost estimates with these considerations.

Installed Costs of HT PEM CHP Systems

Assuming a 50% corporate markup and 33% additional cost for installation and other fees, the installed cost for a 10kWe and 100kWe CHP system are shown in Figures 4.3 and 4.4, respectively. This work did not explore installation costs in detail but relies on other sources for this installation cost (e.g., EPA 2008). The installed cost for 10kWe and 100kWe systems at 1000 systems per year are estimated to be \$5500/kWe and \$2950/kWe, respectively, while at 50,000 systems per year, installed system costs are reduced to \$3900/kWe and \$2400/kWe, respectively.

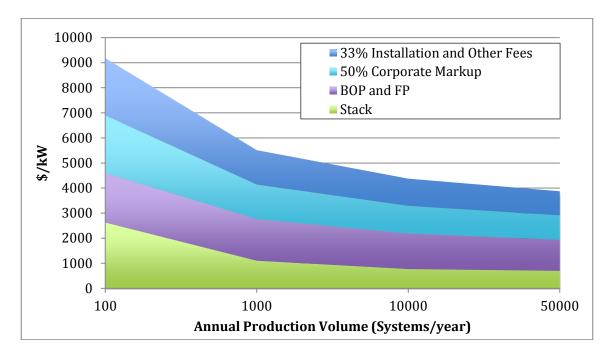


Figure 4.3. Installed cost as a function of volume for 10kWe CHP system.

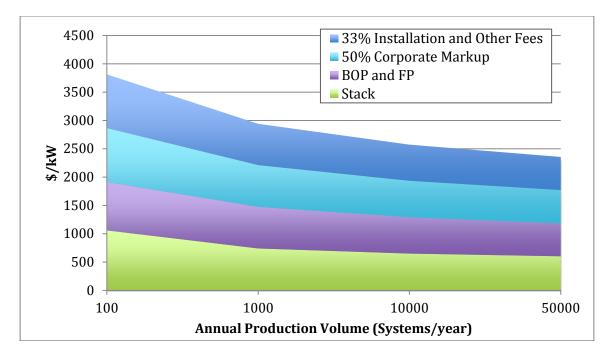


Figure 4.4. Installed cost as a function of volume for 100kWe CHP system.

4.2. Comparison between HT PEM and LT PEM Fuel Cell Systems

The purpose of this section is to provide a cost comparison to the low temperature PEM system. The low temperature cost data comes from the research team's previous work (Wei, et al., 2014) on LT PEM fuel cell cost analysis.

Figure 4.5 compares the stack cost of LT PEM and HT PEM systems for CHP applications. It is seen that the HT PEM stack cost at low production volumes (10kWe, 100systems/yr) is about \$840/kWe (47%) higher than the LT stack cost while at high production volumes (100kWe, 50,000 systems/yr), stack cost is \$360/kWe (153%) higher. At all production volumes, the HT GDE/membrane combination is has a higher cost than the LT GDL/catalyst coated membrane combination. Catalyst is deposited on to the GDL in the HT PEM stack versus depositing the catalyst to the membrane for LT PEM stack, and the HT PEM case has higher Pt loading at 0.7mg/cm² vs 0.5mg/cm² for the LT case. The plates are also more costly in the HT case due to the use of compression molding and the adoption of a separator layer as described in Chapter 3. In addition, the power density (W/cm²) of the HT PEM stack is lower than the LT stack by about 40%, which in turn necessitates larger cell area or a greater number of cells for the same level of electrical output. The HT PEM cell area in our case is about twice as large compared to the LT PEM cell considered in the earlier LT PEM report. This necessitates result in higher overall material costs and higher overall stack costs for the HT PEM fuel cell case.

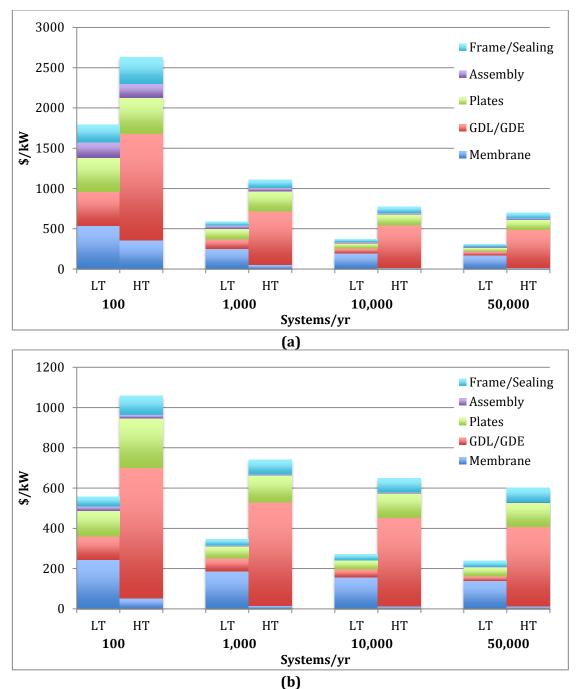


Figure 4.5. Stack cost comparison w/ component breakdown (a) 10kWe (b) 100kWe

Figure 4.6 shows the stack cost comparison with a manufacturing cost breakdown and illustrates that the majority of the cost difference between the LT PEM and HT PEM systems is from the differences in material cost. The driving factor behind increased material cost is the increased cell area and stack size. The HT stack also has higher Pt loading at 0.7mg/cm² vs 0.5mg/cm² for the LT case.

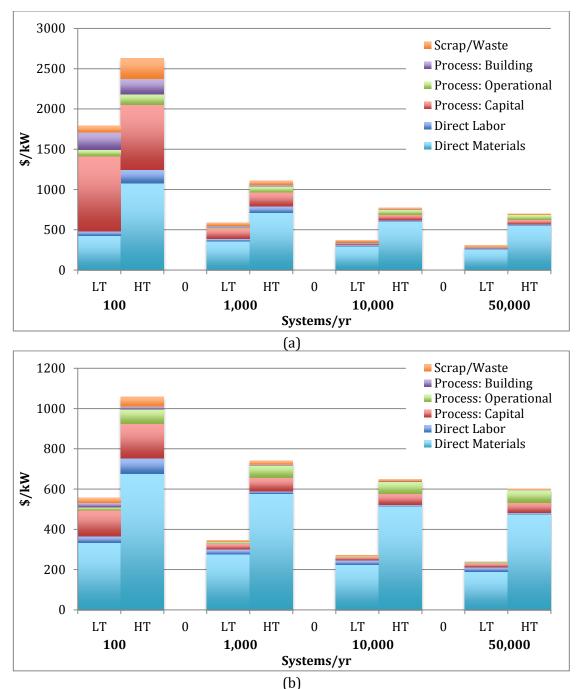


Figure 4.6. Stack cost comparison w/ manufacturing breakdown (a) 10kWe (b) 100kWe

Figure 4.7 shows a system cost comparison of the LT and HT PEM fuel cell systems. At low production volumes (10kWe, 100 systems/year), the HT system cost is \$550/kWe (14%) greater than the LT system. At high production volumes (100kWe, 50,000 systems/yr), the HT system cost is \$320/kWe (31%) greater than the LT system. The larger cost differential at high volumes is due to the fact that stack costs make up a larger fraction of overall costs for the HT case than the LT case.

The HT case has 10-15% lower FP and BOP costs due to system simplification from less need for CO clean up, no air slip to anode, and no membrane humidification. This reduction in FP/BOP costs, however, is not sufficient to compensate for higher stack costs.

In conclusion, current cost estimates for HT PEM CHP systems are more costly than analogous LT PEM CHP system costs due to three main factors: (1) lower current density and higher cell areal size, (2) more complex plate design and expensive plate process, and (3) higher catalyst loading. Development in HT PEM technology should focus on these areas for further cost reduction as well as developing high yield, automated processes that are assumed above.

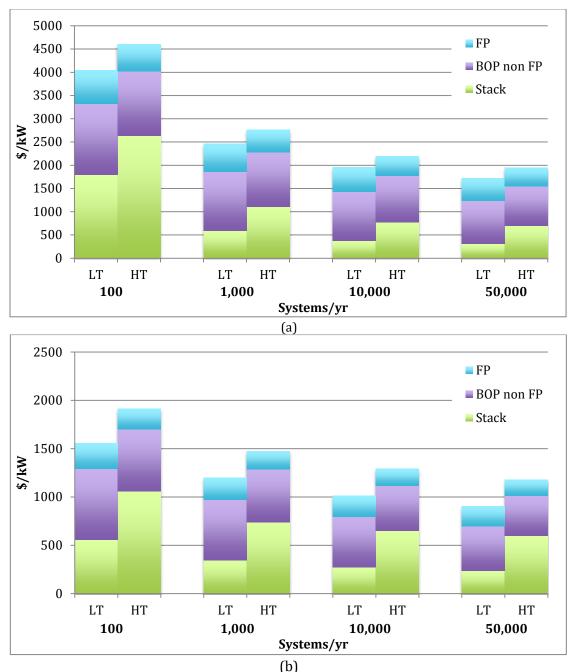


Figure 4.7. System cost comparison (a) 10kWe (b) 100kWe

5 Total Cost of Ownership Modeling of CHP Fuel Cell Systems

A total cost of ownership (TCO) model was developed for HT PEMFC CHP systems, which take into account capital costs, fuel costs, operating costs, maintenance costs, end-of-life values, heating fuel savings, and externalities. Annual cost of ownership is critically dependent on the assumed duty cycle of operation of the equipment, resulting in the so- called system utilization⁶. The most economic duty cycle for any given CHP installation depends on several complex factors, including site variables such as space heating requirements, prevailing utility rates and "standby charges⁷" and site requirements. Various types of tools and analyses can help in addressing these key TCO considerations. Similar to the LT PEMFC report, in this chapter, we present the key components of the TCO model including life cycle cost modeling (LCC) and results of life cycle impact assessment modeling (LCIA). Total cost of ownership "TCO" modeling is also included as a roll-up summary of the costing models for several commercial building types in six different cities including Phoenix, Arizona, Minneapolis, Minnesota, Chicago, Illinois, New York City, New York, Houston, Texas, and San Diego, California. These cities were chosen to represent several climate zones within the United States.

5.1. Use-phase Model

Figure 5.1 below shows the logic used in developing the use-phase model for a 10kWe fuel cell system. This model has four inputs: electricity demand excluding cooling loads, electricity demand solely for space cooling using traditional electrically-driven vapor-compression air conditioners, hot water heating demand, and space heating demand as a function of time, as recorded in daily load curves for three different days per month (weekday, weekend and peak day). These load shapes were collected from an NREL modeling simulation (Deru et al., 2011). The operating mode of this system will follow the total electricity load (sum of 'non-cooling electricity load' and 'electricity for cooling load'). The fuel cell system will cover all of the electricial demand at any time; however, if the total demand exceeds fuel cell capacity (i.e. total electricity loads >10kWe) then the system will cover 10 kWe only and the remaining will be purchased directly from the grid. Similar logic is used for heating demand.

Table 5.1 below shows the system cost and operation and maintenance (O&M) cost assumed for HT PEM systems. These installed costs are taken directly from the system cost estimates in the previous chapter for annual volumes assumed to be 100MW per year (e.g., 10,000 x 10kWe systems per year. More details about use-phase model and assumptions can be found in the LT PEMFC report.

⁶ In this report, system availability is the percentage of hours in the year that the FCS is available for operation. For example, the system may not be available some hours due to scheduled maintenance or unscheduled outages. The system utilization is then defined as the percentage of kWhe produced by the fuel cell system out of the total kWhe of potential output at the nameplate power rating of the system and for available hours of operation.

⁷ Standby rates are charges levied by utilities when a distributed generation system, such as an on-site CHPsystem, experiences a scheduled or emergency outage, and then must rely on power purchased from the grid. These charges are generally composed of two elements: energy charges, in \$/kWh, which reflect the actual energy provided to the CHP system; and demand charges, in \$/kW, which attempt to recover the costs to the utility of providing capacity to meet the peak demand of the facility using the CHP system. Source: ACEEE, http://www.aceee.org/topics/standby-rates, accessed 5/29/14.

Figure 5.1. Flow chart and logic used to model 10kWe CHP system with reformate fuel.

Application	Small	Hotel	Hospital		
FC system size	10 kWe	50 kWe	250 kWe	1MWe (4X250kWe)	
Capital Cost (\$/kWe)	4,400	3,400	3,000	3,000	
O&M cost (cents/kWh)	3.5	3.5	3.5	3.5	

5.1.1. Use-phase model results

•

In this section we will discuss results from two building types (small hotel and hospital) in six U.S. cities. These cases have more relative heating demand than other building types and are more favorable for CHP.

Although the cost of the fuel cell case is higher than the case of no fuel cell, adopting CHP fuel cell systems in some areas in the U.S. would save large amount of GHG emissions (e.g., Minnesota), where grid electricity has a large fraction of coal-based power and high carbon intensity. In addition, it is important to note that cost savings from waste heat utilization will increase as the FC system is utilized for space heating applications in addition to the water heating. The sizing of the fuel cell system is an important decision which depends on several factors such as building electricity and heating demands, equipment costs, natural gas prices and electricity tariffs. In the following analyses we consider "small" FC system sizes: 10kWe fuel cell system for small hotels and 250kWe fuel cell system for hospitals. Tables 5.2 and 5.3 show model assumptions for small hotels and hospitals, respectively. Appendix D also includes the assumptions and analyses of larger fuel cell system sizes: 50kWe fuel cell systems for small hotels and 1MW fuel cell systems for hospital.

Model results in Table 5.4 show the results of utilizing a fuel cell system to augment purchased electricity and purchased fuel for conventional heating compared to the case of no fuel cell and just relying on purchased electricity and conventional heating. For a small hotel, the annuitized cost of supplying all building electricity and heating increases with the use of fuel cells by an amount between about 3% in Minneapolis, MN to about 27% in Houston, TX when the FC system supplies both space heating and water heating. For the hospital (Table 5.5), the annuitized cost with fuel cells increases in the range of 10% for fuel cell system installed in Chicago compared to a 28.2% cost increase for a fuel cell system installed in New York, NY. Here, without any additional credits, a potential niche market was located for small hotels located in Minneapolis, MN.

In general, as the in-use heat utilization increases, the economics and positive environmental impacts of CHP fuel cell systems also rise (Colella et al., 2010). For the small hotel, as shown in Table 5.4, the overall heat recovery utilization of a system installed is 54% if the FC system utilizes for both space and water heating for a system installed in Houston, TX. The heat utilization is much higher for a system installed in other cities like Minneapolis which reaches 100% when the FC system both space and water heating demands. For the hospital, as shown in Table 5.5, the overall heat recovery efficiency of a system installed is relatively high; approximately 75%, for a system installed in Houston, but can reach 100% for a system installed in New York City.⁸

Parameter	Phoenix, AZ	Minneapolis, MN	Chicago, IL	NYC, NY	Houston, TX	Unit					
Building Type		S	mall Hotel								
FC system size			10			kWe					
Capital costs of FC including installation cost		4,400									
Electricity price	Variable by time	Variable by time	Variable by time	Variable by time	Variable by time	\$/kWh					
Demand Charge	4.05	3.30	5.69	17.95	12.39 15.13 (June-Sep)	\$ * Peak kWh					
NG cost	0.0357	0.0258	0.0292	0.0332	0.0263	\$/kWh					
Scheduled maintenance cost ‡	500	500	500	500	500	\$/yr					
O&M cost	0.035	0.035	0.035	0.035	0.035	\$/kWh					
Days per year	365	365	365	365	365	day					
FC system availability‡‡	96%	96%	96%	96%	96%						
Lifetime of system	15	15	15	15	15	yr					
Interest rate	5%	5%	5%	5%	5%						

Table. 5.2. Assumptions for cost and environmental impact model for small hotel case.

‡ From CETEEM model (Lipman et al., 2004).

^{‡‡} In this analysis the CHP system was assumed to have a 96% availability factor and three outages during the year. One outage is assumed to be a planned maintenance outage and two are assumed to be unplanned forced outages.

⁸ Note the "Annual generated heat by FC" in Tables 5.4 and 5.5 reflect the thermal efficiency in Table 1.2 so that a "100% heat utilization" means that the full thermal efficiency of the CHP system has been realized.

Parameter	Phoenix , AZ	Minneapolis, MN	Chicago, IL	NYC, NY	Houston, TX	San Diego, CA	Unit
Building Type			Hospital				
FC system size			250				kWe
Capital costs of FC including installation cost				\$/kWe			
Electricity price	Variable by time	Variable by time	Variable by time	Variable by time	Variable by time		\$/kWh
Demand Charge	4.05	8.98 12.86 (June- Sep)	5.86	17.95	12.39 15.13 (June- Sep)	19.96	\$ * Peak kWh
NG cost	0.0357	0.0258	0.0292	0.0332	0.0263	0.0277	\$/kWh
Scheduled maintenance cost ‡	3,000	3,000	3,000	3,000	3,000		\$/yr
O&M cost	0.035	0.035	0.035	0.035	0.035		\$/kWh
FC system availability‡‡	96%	96%	96%	96%	96%		
Lifetime of system	15	15	15	15	15		yr
Interest rate	5%	5%	5%	5%	5%		

Table. 5.3. Life cycle cost analysis assumptions for hospital case (250kWe FC system).

From CETEEM model (Lipman et al., 2004).

‡‡ In this analysis the CHP system was assumed to have a 96% availability factor and three outages during the year. One outage is assumed to be a planned maintenance outage and two are assumed to be unplanned forced outages.

	Phoe	nix, AZ	Minne	apolis,	Chica	go, IL	NYC	, NY	Houst	on, TX
	No Fuel		No Fuel		No Fuel		No Fuel		No Fuel	
Output	Cell	Fuel Cell								
FC System Utilization		100.0%		100.0%		100.0%		100.0%		100.0%
FC Heat Utilization										
WH+SH		66.0%		100.0%		100.0%		100.0%		54.0%
Total Electricity Demand								•		
(kWh/yr)	576	5,668	419	,590	424	,147	369	,661	497	,656
Total Space Heating										
Demand (kWh/yr)	23	,307	174	,743	135	,869	135	,869	()
Total Water Heating				-						
Demand (kWh/yr)	76	,954	127	,112	118	,971	116	,075	83,	071
Annual Generated Power										
by FC (kWh)		84,096		84,096		84,096		84,096		84,096
Annual Generated Heat										
by FC (kWh)		145,541		145,541		145,541		145,541		145,541
			FC su	ter heat	ing					
Capital Cost	0	4,239			0		0	-	0	4,239
O&M Cost	0	2,943	0	2,943	0		0		0	2,943
Scheduled Maintenance	0	500	0	500	0	500	0	500	0	500
Fuel Cost-FC Only	0	9,959	0	7,199	0	8,165	0	9,260	0	7,347
Residual Fuel	3,574	319	7,779		7,449	3,489	8,352	3,875	2,185	84
Electrcity Cost	47,305	40,333			32,104	25,495	8,798		15,427	12,712
Demand Charge	5,445	5,093		3,125	6,021	5,508	16,959		15,490	14,321
Fixed Monthly Charge	150	150	131	131	348	348	1,241	1,241	295	295
Cost (\$/yr) FC supplies										
both space heating and										
Hot water	56,473	63,536	56,706	58,373	45,922	50,688	35,350	44,115	33,397	42,442
GHG (ton CO2/yr) FC										
supplies hot water only	298.483	289.283	404.7	351.995	338.787	289.787	147.998	129.198	277.3	268.8
						t water o				
Capital Cost	0	4,239	0	•	. 0		0	4,239	0	4,239
O&M Cost	0	2,943	0		0		0		0	2,943
Scheduled Maintenance	0	500	0		0		0		0	500
Fuel Cost-FC Only	0	9,959	0		0		0	9,260	0	7,347
Residual Fuel	3,574	929	7,779	-	7,449	-	8,352	,	2,185	. 84
Electrcity Cost	47,305	40,333			32,104	25,495	8,798		15,427	12,712
Demand Charge	5,445	5,093			6,021	5,508	16,959		15,490	14,321
Fixed Monthly Charge	150	150			348	348	1,241		295	295
Cost (\$/yr)										
FC supplies both space										
heating and Hot water	56,473	64,147	56,706	59,239	45,922	51,716	35,350	45,303	33,397	42,442
GHG (ton CO2/yr) FC	, -	,	, -	, -			, -	,	,	
supplies both space										
heating and Hot water	298.483	294.683	404.7	356.595	338.787	297.487	147.998	133.198	277.3	268.8

Table 5.4. Output results from use-phase model for small hotel (10 kWe FC system)

† CO2 emissions only. * O&M cost = \$0.035/kWh WH: water heating; and SH: space heating

	Phoe	nix, AZ	Minne	• •	Chica	igo, IL	NYC	., NY	Houst	on, TX	San Die	ego, CA
		···· · , · · <u> </u>	M	Ν				, I				-8-,
Output	No Fuel Cell	Fuel Cell	No Fuel Cell	Fuel Cell	No Fuel Cell	Fuel Cell	No Fuel Cell	Fuel Cell	No Fuel Cell	Fuel Cell	No Fuel Cell	Fuel Cell
FC Power Utilization		100.0%		100.0%		100.0%		100.0%		100.0%		93.0%
FC Heat Utilization												
WH+SH		71.9%		98.2%		93.6%		100.0%		75.3%		15.4%
Total Electricity Demand												
(MWh/yr)	9,	140	7,331		7,8	352	7,6	524	9,5	9,533		66
Total Space Heating												
Demand (MWh/yr)	2,	689	3,6	33	3,6	582	4,3	811	29,	622	52	29
Total Water Heating												
Demand (MWh/yr)	1	.40	23	30	2	15	2:	10	15	51	7	6
Annual Generated Power												
by FC (MWh)		2,102		2,102		2,102		2,102		2,102		1,965
Annual Generated Heat												
by FC (MWh)		3,550		3 <i>,</i> 550		3,550		3,550		3,550		3,527
				FC	supplies	both space	e and wat	water heating				
Capital Cost	0	72,257	0	72,257	0	72,257	0	72,257	0	72,257	0	72,257
O&M Cost	0	73,584	0	73,584	0	73,584	0	73,584	0	73,584	0	68,764
Scheduled Maintenance	0	3,000	0	3,000	0	3,000	0	3,000	0	3,000	0	3,000
Fuel Cost-FC Only	0	253,211	0	183,037	0	207,612	0	235,455	0	186,801	0	182,188
Residual Fuel	100,839	4,414	99,542	15,181	107,626	10,494	142,926	26,219	77,908	4,903	16,759	0
Electrcity Cost	628,966	478,999	449,323	315,087	593,645	428,409	181,449	129,327	295,508	227,618	186,343	10,951
Demand Charge	63,848	52,624	147,992	119,111	87,490	71,101	260,526	210,542	215,513	178,937	67,485	23,511
Fixed Monthly Charge	6,367	6,367	341	341	516	516	1,241	1,241	295	295	2,794	2,794
Cost (\$/yr)												
FC supplies both space												
heating and Hot water	800,020	944,456	697,198	781,596	789,276	866,973	586,142	751,625	589,224	747,395	273,381	363,465
GHG (ton CO2/yr) FC												
supplies hot water only	4,956	5,225	6,815	5,855	6,084	4,762	2,892	2,504	5,560	5,232	1,162	972
					FC s	upplies ho	t water o	nly				
Capital Cost	0	72,257	0	72,257	0	72,257	0	72,257	0	72,257	0	72,257
O&M Cost	0	73,584	0	73,584	0	73,584	0	73,584	0	73,584	0	68,764
Scheduled Maintenance	0	3,000	0	3,000	0	3,000	0	3,000	0	3,000	0	3,000
Fuel Cost-FC Only	0	253,211	0	183,037	0	207,612	0	235,455	0	186,801	0	182,188
Residual Fuel	100,839	95,863	99,542	93,617	107,626	101,332	142,926	135,980	77,908	73,944	16,759	14,665
Electrcity Cost	628,966	478,999	449,323	315,087	593,645	428,409	181,449	129,327	295,508	227,618	186,343	10,951
Demand Charge	63,848	52,624	147,992	119,111	87,490	71,101	260,526	210,542	215,513	178,937	67,485	23,511
Fixed Monthly Charge	6,367	6,367	341	341	516	516	1,241	1,241	295	295	2,794	2,794
Cost (\$/yr)												
FC supplies hot water												
only	800,020	1,035,905	697,198	860,033	789,276	957,811	586,142	861,385	589,224	816,437	273,381	378,129
GHG (ton CO2/yr) FC												
supplies hot water only	4,956	5,273	6,815	6,393	6,084	5,846	2,892	3,190	5,560	5,791	1,162	1,470

Table 5.5. Output results from use-phase model for hospital (250kWe FC system).

† CO2 emissions only.

* 0&M cost = \$0.035/kWh

WH: water heating; and SH: space heating

5.2. Life Cycle Impact Assessment (LCIA) Modeling

Similar to the approach we used for LT PEMFC, we developed an LCIA model to quantify the environmental and human health damages caused by fuel cell systems in commercial buildings. These fuel cells displace grid-based electricity and some fraction of heating demand fuel, as specified by the user of the model. We calculate an average electricity intensity that is displaced by the FCS and use commercial building surveys to estimate the mix of heating fuel types by region that is displaced by the FCS. Externalities to be valued include morbidity, mortality, impaired

visibility, recreational disruptions, material damages, agricultural and timber damages, and global warming. Details for computing average electricity intensity and the mix of heating fuel types by region are described in LT PEM report (Wei et al., 2014).

Direct emission factors reported in recent literature on fuel cells allowed us to determine reasonable estimates for CO₂, CH₄, N₂O, CO, NO_x, SO_x, PM₁₀ and VOC (Table 5.6). All values are derived for HT PEM fuel cell based on the values given by Colella (2012).

g/kWhe
618
0.008
Negligible
Negligible
Negligible
0.580
0.019
0.068

Table 5.6. HT PEM Fuel cell emission factors in grams per kWh

Tables 5.7 and 5.8 summarize LCIA results for small hotel case using 10kWe fuel cell system in which waste heat is utilized for water heating only (Table 5.7) and both space and water heating (Table 5.8). Similarly Tables 5.9 and 5.10 summarizes LCIA results for 250kWe fuel cell system used in the hospital case. Table 5.9 summarizes LCIA results when waste heat is used for water heating only, while Table 5.10 summarizes LCIA results when fuel cell system is used for both space and water heating. The calculation of these emissions uses the same modeling approach described in Wei et al. (2014) and a detailed description can be found in that reference.

Table 5.7. LCIA results for 10kWe fuel cell system used in the small hotel. Waste heat is utilized for water heating application only.

Output	Phoenix Minneapolis		Chicago	New York City	Houston	
Annual Generated Power by FC (kWh)	84,096	84,096	84,096	84,096	84,096	
Annual Generated Heat by FC (kWh)	145,541	145,541	145,541	145,541	145,541	
Avoided GHG [tCO2e/y]	3.8	48.1	41.3	14.8	8.5	
Avoided NOx [tNOx/y]	0.042	0.129	0.117	0.049	0.041	
Avoided SOx [tSOx/y]	0.033	0.235	0.371	0.075	0.040	
Avoided PM10 [t/y]	0.0015	0.0012	0.0014	0.0015	0.00071	
Avoided PM2.5 [t/y]	0.000	0.00022	0.00025	0.00039	0.00000	
GHG credit at \$44/ton CO ₂ (\$/kWhe)	0.002	0.025	0.022	0.008	0.004	
Health, Environmental Savings (\$/kWhe)	0.003	0.024	0.035	0.016	0.003	

Output	Phoenix	Phoenix Minneapolis		New York City	Houston	
Annual Generated Power by FC (kWh)	84,096	84,096	84,096	84,096	84,096	
Annual Generated Heat by FC (kWh)	145,541	145,541	145,541	145,541	145,541	
Avoided GHG [tCO2e/y]	9.2	52.7	49.0	18.8	8.5	
Avoided NOx [tNOx/y]	0.047	0.134	0.126	0.052	0.041	
Avoided SOx [tSOx/γ]	0.038	0.243	0.392	0.083	0.040	
Avoided PM10 [t/y]	0.0019	0.0013	0.0017	0.0017	0.00071	
Avoided PM2.5 [t/y]	0.00059	0.00026	0.00030	0.00049	0.0000	
GHG credit at \$44/ton CO_2 (\$/kWhe)	0.0048	0.028	0.026	0.010	0.0045	
Health, Environmental Savings (\$/kWhe)	0.0037	0.025	0.037	0.018	0.0026	

Table 5.8. LCIA results for 10kWe fuel cell system used in the small hotel. Waste heat is utilized for both space and water heating.

Table 5.9. LCIA results for 250kWe fuel cell system used in the hospital. Waste heat is utilized for water heating application only.

Output	Phoenix	Minneapolis	Chicago	New York City	Houston	San Diego
Annual Generated Power by FC (MWh)	2,102	2,102	2,102	2,102	2,102	1964.7
Annual Generated Heat by FC (MWh)	3,550	3,550	3,550	3,550	3,550	3,527
Avoided GHG [tCO2e/y]	-317	422	238	-298	-231	-308
Avoided NOx [tNOx/y]	0.70	2.32	2.05	0.71	0.70	0.64
Avoided SOx [tSOx/y]	0.39	4.46	7.10	1.20	0.84	0.36
Avoided PM10 [t/y]	0.0022	0.0033	0.0020	0.0033	0.0021	0.00063
Avoided PM2.5 [t/y]	0.00023	0.0006	0.00010	0.00088	0.00011	0.00006
GHG credit at \$44/ton CO_2 (\$/kWhe)	-0.0066	0.0088	0.0050	-0.0062	-0.0048	-0.0069
Health, Environmental Savings (\$/kWhe)	0.0009	0.0161	0.0256	0.0051	0.0017	0.0015

Output	Phoenix	hoenix Minneapolis		New York City	Houston	San Diego	
Annual Generated Power by FC (MWh)	2,102	2,102	2,102	2,102	2,102	1964.7	
Annual Generated Heat by FC (MWh)	3,550	3,550	3,550	3,550	3,550	3,527	
Avoided GHG [tCO2e/y]	269	960	1322	388	328	-190	
Avoided NOx [tNOx/y]	1.19	2.79	3.25	1.28	1.17	0.73	
Avoided SOx [tSOx/y]	0.55	4.77	10.04	1.90	0.92	0.40	
Avoided PM10 [t/y]	0.0445	0.0505	0.0328	0.0558	0.0407	0.00502	
Avoided PM2.5 [t/y]	0.00469	0.0094	0.00170	0.01491	0.00210	0.00050	
GHG credit at \$44/ton CO ₂ (\$/kWhe)	0.0056	0.0201	0.028	0.008	0.0069	-0.0043	
Health, Environmental Savings (\$/kWhe)	0.0025	0.0223	0.037	0.021	0.0039	0.0020	

Table 5.10. LCIA results for 250kWe fuel cell system used in the hospital. Waste heat is utilized for both space and water heating.

5.3. Total Cost of Ownership Modeling Results

Figure 5.2 outlines the approach for comparing fuel cell total cost of ownership with grid based electricity and conventional heating. A fuel cell CHP system will typically increase the cost of electricity but provide some saving by offsetting heating energy requirements. The cost of fuel cell electricity in this case is taken to be the "levelized cost of electricity" or the levelized cost in kWh for the fuel cell system taking into account capital costs, operations and maintenance (O&M), fuel, and capital replacement costs (inverter, stack replacement, etc.) only. In this work we credit all saving from heating fuel savings, electricity demand charge savings, carbon credits from net system savings of CO_2eq , and net avoided environmental and health externality damages to the fuel cell system cost of electricity and call this quantity "cost of electricity with total cost of ownership savings." This allows comparison of fuel cell COE with TCO credits or "total cost of electricity" to the reference grid electricity cost (kWh).

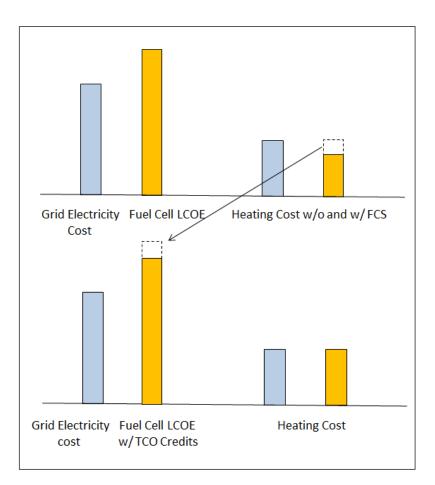


Figure 5.2. Cost of energy service for FC CHP and conventional electricity and heating systems. A fuel cell CHP system will typically increase the levelized cost of electricity (upper left two bars). But if waste heat is utilized, the cost of heating is reduced (upper right two bars). In this treatment, all non-electricity credits (heating, carbon, etc) are applied to a "total cost of electricity" (lower left two bars).

Tables 5.11 and 5.12 summarize TCO results for 10 kWe and 250kWe CHP fuel cell system used in small hotel and hospital, respectively. Results for a 10 kWe fuel cell system used in small hotel in Chicago is shown in Figure 5.4 which shows clearly that fuel cell system can act as a viable economic CHP solution when including a total cost framework and under the assumptions of this study.

Chicago has relatively high carbon intensity electricity due to a significant fraction of coal- powered electricity, and by extension other cities in the Midwest such as Minneapolis are highlighted as a region that is relatively favorable for FC CHP applications in certain commercial building types. For example, for a small hotel with a 10 kWe FCS, space and water heatings can offset 25% of the levelized cost of electricity (Figure 5.3) in Chicago. GHG credits provide 14% savings at \$44 per ton of CO₂-eq, and health and environmental savings provide 20% savings. Total savings from heating and externalities is almost 60% for the case of CHP with offset water heating and space heating.

Table 5.11. TCO results for 10kWe FC system used in small hotel with the FC system providing both water heating and space heating.

	Phoer	nix, AZ	Minneap	olis, MN	Chica	igo, IL	NYC	., NY	Houston, TX	
Output	No FCS	Fuel Cell	No FCS	Fuel Cell						
FC System Utilization		100%		100%		100%		100%		100%
Total Electricity Demand (kWh/yr)	576,668	576,668	419,590	419,590	424,147	424,147	369,661	369,661	497,656	497,656
Total Space Heating Demand (kWh/yr)	23,	23,307		,743	135	,869	135	,869	0	
Total Water Heating Demand (kWh/yr)	76,	954	127	,112	118	,971	116	,075	83,	071
Annual Generated Power by FC (kWh)		84,096		84,096		84,096		84,096		84,096
FC fraction of Electricity Demand		15%		20%		20%		23%		17%
Annual Generated Heat by FC										
(kWh)		145,541		145,541		145,541		145,541		145,541
Capital Cost (\$/yr)		4,239		4,239		4,239		4,239		4,239
O&M Cost (\$/yr)		2,943		2,943		2,943		2,943		2,943
Scheduled Maintenance (\$/yr)		500		500		500		500		500
Fuel Cost for Fuel Cell (\$/yr)		9,959		7,199		8,165		9,260		7,347
Fuel Cost for Conv. Heating (\$/yr)	3574	319	7780	4,238	7450	3,489	8351	3,875	2185	84
Purchased Electricity Energy Cost										
(\$/yr)	47305	40333	45374	35998	32104	25495	8798	6713	15427	12712
Demand Charge (\$/yr)	5445	5093	3422	3125	6021	5508	16959	15344	15490	14321
Fixed Charge, Electricity (\$/yr)	150	150	131	131	348	348	1241	1241	295	295
Total Electrictiy Cost (\$/yr)	52899	63217	48927	54135	38473	47198	26998	40239	31213	42357
Total Cost of Electricity (\$/kWh)	0.092	0.110	0.117	0.129	0.091	0.111	0.073	0.109	0.063	0.085
Purchased Electricity Cost (\$/kWh)	0.092	0.093	0.117	0.117	0.091	0.092	0.073	0.082	0.063	0.066
LCOE of FC power (\$/kWh)		0.210		0.177		0.188		0.201		0.179
Fuel savings from conventional heating (\$/yr)		3255		3542		3961		4476		2101
Fuel savings per kWh (\$/kWh)		0.039		0.042		0.047		0.053		0.025
LCOE of FC power with fuel savings (\$/kWh)		0.171		0.135		0.141		0.148		0.154
GHG credit at \$44/ton CO₂ (\$/kWh)		0.0048		0.0276		0.0256		0.0098		0.0045
Health, Environmental Savings (\$/kWh)		0.0037		0.0251		0.0373		0.0098		0.0026
LCOE with TCO Savings for Fuel Cell Power (\$/kWh)		0.163		0.082		0.078		0.129		0.147
LCOE with TCO Savings for FC and Purchased Power, (\$/kWh)		0.103		0.110		0.089		0.092		0.080

	Phoer	nix, AZ	Minneap	olis, MN	Chica	igo, IL	NYC	, NY	Houst	on, TX	San Die	ego, CA
Output	No FCS	Fuel Cell	No FCS	Fuel Cell	No FCS	Fuel Cell	No FCS	Fuel Cell	No FCS	Fuel Cell	No FCS	Fuel Cell
FC System Utilization		100.0%		100.0%		100.0%		100.0%		100.0%		0.94
Total Electricity Demand (MWh/yr)	9,140	9,140	7,331	7,331	7,852	7,852	7,624	7,624	9,533	9,533	2166.4	2166.4
Total Space Heating Demand (MWh/yr)	2,6	689	3,6	33	3,6	582	4,3	811	28	12	528.8	
Total Water Heating Demand (MWh/yr)	14	40	23	30	2:	15	22	10	15	51	75	5.5
Annual Generated Power by FC (MWh)		2,102		2,102		2,102		2,102		2,102		1965
FC fraction of Electricity Demand		23%		29%		27%		28%		22%		91%
Annual Generated Heat by FC (MWh)		3,550		3,550		3,550		3,550		3,550		3,550
Capital Cost (\$/yr)		72,257		72,257		72,257		72,257		72,257		72,257
O&M Cost (\$/yr)		73,584		73,584		73,584		73,584		73,584		68,764
Scheduled Maintenance (\$/yr)		3,000		3,000		3,000		3,000		3,000		3,000
Fuel Cost for Fuel Cell (\$/yr)		253,211		183,037		207,612		235,455		186,801		182,188
Fuel Cost for Conv. Heating (\$/yr)	100839	4,414	99542	15,181	107626	10,494	142926	26,219	77908	4,903	16759	0
Purchased Electricity Energy Cost (\$/yr)	628966	478,999	449323	315,087	593645	428,409	181449	129,327	295508	227,618	186343	10,951
Demand Charge (\$/yr)	63848	52624	147992	119111	87490	71101	260526	210542	215513	178937	67485	23511
Fixed Charge, Electricity (\$/yr)	6367	6367	341	341	516	516	1241	1241	295	295	2794	2794
Total Electricity Cost (\$/yr)	699181	940041	597655	766416	681651	856479	443216	725406	511316	742492	256622	363466
Total Cost of Electricity (\$/kWh)	0.076	0.103	0.082	0.105	0.087	0.109	0.058	0.095	0.054	0.078	0.118	0.168
Purchased Electricity Cost (\$/kWh)	0.076	0.076	0.082	0.083	0.087	0.087	0.058	0.062	0.054	0.055	0.118	0.185
LCOE of FC power (\$/kWh)		0.191		0.158		0.170		0.183		0.160		0.166
Fuel savings from conventional heating (\$/yr)		96425		84361		97132		116707		73005		16759
Fuel savings per kWh (\$/kWh)		0.0459		0.0401		0.0462		0.0555		0.0347		0.0085
LCOE of FC power with fuel savings (\$/kWh)		0.145		0.118		0.123		0.127		0.125		0.158
GHG credit at \$44/ton CO ₂ (\$/kWh)		0.0056		0.0201		0.0277		0.0081		0.0069		-0.0043
Health, Environmental Savings (\$/kWh)		0.0025		0.0223		0.0369		0.0205		0.0040		0.0020
LCOE with TCO Savings for Fuel Cell Power (\$/kWh)		0.137		0.075		0.059		0.099		0.114		0.160
LCOE with TCO Savings for FC and Purchased Power, (\$/kWh)		0.090		0.081		0.079		0.072		0.068		0.162

Table 5.12. TCO results for 250kWe FC system used in hospital with the FC system providing both water heating and space heating.

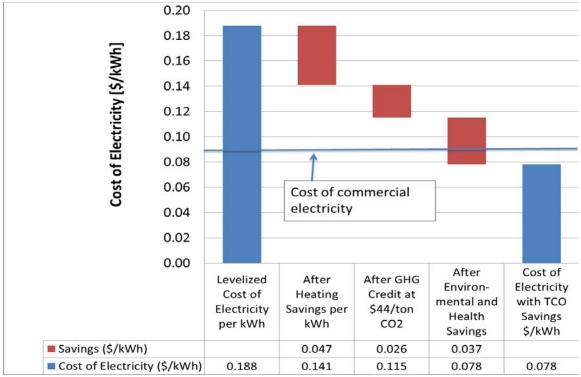


Figure 5.3. Levelized and total cost of electricity with TCO credits for a 10kWe small hotel in Chicago, IL for a FC system assumed to provide space heating and water heating.

6. Conclusions

Although high temperature PEM fuel cell systems still have significant reliability issues to overcome, they offer the advantages of reduced sensitivity to CO poisoning in the input fuel stream, lower cost membrane, and balance of plant simplification. The manufacturing costs presented here represent the authors' best estimates for longer-lifetime HT PEM technology

With the assumptions made in this study, HT PEM systems are higher cost than LT PEM systems, compared to the authors' recent report on LT PEM CHP systems (Wei et al., 2014). HT PEM CHP direct system costs are about 15% higher at low annual production volumes (100 x 10kWe systems per year) to 30% higher at high volumes (50,000 x 100kWe systems per year). Current cost estimates for HT PEM CHP systems are more costly than LT PEM CHP systems costs due to three main factors: (1) lower current density and higher cell areal size; (2) more complex plate design and expensive plate process; and (3) higher catalyst loading.

Bottom up DFMA costing analysis for fuel cell stack components in this work shows that, for stationary applications, HT PEM fuel cell stacks alone can approach a direct manufacturing cost of \$600 per kWe of net electrical power at high production volumes (e.g. 100kWe CHP systems at 50,000 systems per year). Overall system costs including corporate markups and installation costs are about \$2400/kWe (\$2200) for 100kWe (250kWe) CHP systems and about \$3900/kWe for 10kWe systems, all at 50,000 systems per year. All fuel cell stack components (membrane, GDE, framed MEA, plates and stack assembly are assumed to be manufactured in-house with high throughput processes and high yield (80%) assumed for all modules. Nearly fully automated roll-to-roll processing is modeled for the critical catalyst coated gas diffusion electrode. While it was not in the scope of this work to do a detailed yield feasibility analysis, well established methodologies exist for improving yield using similar process modules in other industries, and learning-by-doing and improvements in yield inspection, detection, and process control are implicitly assumed.

For the fuel cell stack, direct materials costs dominate at high volume as expected and constitute about 80% of stack manufacturing cost for 100kWe CHP systems at a production level of 50,000 systems per year. For the same system size, the GDE is estimated to make up about 65% of the overall stack cost, with the bipolar plates at 20-25% of the total stack cost depending on stack production volume. At low volumes, the stack cost is sharply reduced in moving from a production volume of 100 to 1000 systems per year because tool and equipment utilization increases rapidly. At 100-250kWe system sizes, the stack cost is estimated to fall at a rate between 20-30% in moving from 100 to 1000 systems per year driven by reduced capital costs and lower direct material costs. For overall fuel cell system costs, the stack cost makes up about 50-55% of total costs for 100 kWe systems across the range of production volumes.

The cost of electricity with total cost of ownership credits for a fuel cell CHP system has been demonstrated for buildings in six U.S. cities. This approach incorporates the impacts of offset heating demand by the FCS, carbon credits, and environmental and health externalities into a total levelized cost of electricity (\$/kWh). This LCOE with total cost of ownership credits can then be compared with the baseline cost of grid electricity. This analysis combines a fuel cell system usephase model with a life-cycle integrated assessment model of environmental and health externalities. Total cost of electricity will be dependent on the carbon intensity of electricity and heating fuel that a FC system is displacing, and thus highly geography dependent.

For the subset of buildings (hotels, hospitals, and office buildings) demand charges, carbon credits, offset water and space heating, and externalities can reduce the total cost of electricity by up to 65% in Chicago but by a much smaller amount in San Diego, which has a lower relative carbon intensity of grid electricity. Health and environmental externalities can provide large savings if electricity or heating with a high environmental impact are being displaced. Overall, this type of total cost of ownership analysis quantification is important to identifying key opportunities for direct cost reduction, to value fully the costs and benefits of fuel cell systems in stationary applications, and to provide a more comprehensive context for future potential policies

References

ACI Technologies, Inc. "*Manufacturing Fuel Cell Manhattan Project.*" U.S. Government Contract No. N00014-08-D-0758, November 2011.

Baird, Donald, Jianhua Huang, and James McGrath. "Highly conductive thermoplastic composites for rapid production of fuel cell bipolar plates."

Baratto F., Diwekar U.M. "Life cycle assessment of fuel cell-based APUs". Journal of Power Sources 139 (2005): 188–196.

Bhamidipati K.L., Didari, S. Harris, T.A.L. Slot die coating of polybenzimiazole based membranes at the air engulfment limit. Journal of Power Sources 239 (2013) 382-392

Breault, Richard D. "Fuel cell electrolyte reservoir layer and method for making." U.S. Patent No. 4,185,145. 22 Jan. 1980.

Breault, Richard D., Warren L. Luoma, and Ronald G. Martin. "Electrochemical cell assembly." U.S. Patent No. 4,929,517. 29 May 1990.

Brooks, K. "Fuel Cell Combined Heat and Power Commercial Demonstration." Pacific Northwest National Laboratory. Prepared for U.S. Department of Energy- Energy Efficiency and Renewable Energy- Office of Fuel Cell Technology May 2014.

Brooks, K. Pilli, S. Makhmalbaf, A. Srivastava, V. Anderson, D. Upton, J. Amaya, J. Business Case for a 5 kW Combined Heat and Power Fuel Cell System. Pacific Northwest National Laboratory. Prepared for U.S. Department of Energy Energy Efficiency and Renewable Energy- Office of Fuel Cell Technology May 2013.

(Coatema) T. Kolbusch, A. Glüsen, J. Mergel. Manufacturing Processes for Gas-Diffusion-Electrodes for Polymer Electrolyte Fuel Cells. 2009 Fuel Cell Seminar & Exposition, Palm Springs, CA, USA November 16-19, 2009.Donald, B. Huang, J. McGrath, J. "Highly conductive thermoplastic composites for rapid production of fuel cell bipolar plates." ELAT 1400 GDE. <u>http://nuvant.com/products/electrode-materials/gas-diffusion-layer/</u>

Cunningham, Brent D., and Donald G. Baird. "Development of bipolar plates for fuel cells from graphite filled wet-lay material and a compatible thermoplastic laminate skin layer." *Journal of power sources* 168.2 (2007): 418-425.

Cunningham, Brent D., Jianhua Huang, and Donald G. Baird. "Development of bipolar plates for fuel cells from graphite filled wet-lay material and a thermoplastic laminate skin layer." *Journal of power sources* 165.2 (2007): 764-773.

Dettling, Charles J., and Peter L. Terry. "Integral gas seal for fuel cell gas distribution assemblies and method of fabrication." U.S. Patent No. 4,505,992. 19 Mar. 1985.

EPA 2008, Technology Characterization: Fuel Cells. Prepared for Environmental Protection Agency Combined Heat and Power Partnership Program, Washington, DC by Energy and Environmental Analysis, Inc., an ICF Company, 1655 N. Fort Myer Dr. Suite 600 Arlington, Virginia 22209, December 2008. Haberl, J.S., (1994) "Economic Calculations for the ASHRAE Handbook," Texas A&M University, College Station, Texas.

Harris, T.A.L. Walczyk, D. F. Weber, M.M. Manufacturing of High-Temperature Polymer Electrolyte Membranes—Part I: System Design and Modeling. Journal of Fuel Cell Science and Technology FEBRUARY 2010, Vol. 7 / 011007-1.

Huang, Jianhua, Donald G. Baird, and James E. McGrath. "Development of fuel cell bipolar plates from graphite filled wet-lay thermoplastic composite materials." *Journal of Power Sources* 150 (2005): 110-119.

Huang, Jianhua, Donald G. Baird, and James E. McGrath. "Highly conductive thermoplastic composites for rapid production of fuel cell bipolar plates." U.S. Patent No. 7,365,121. 29 Apr. 2008.

James, B.D. Kalinoski J.A., Baum, K.N. "Mass Production Cost Estimation for Direct H₂ PEM Fuel Cell Systems for Automotive Applications: *2010 Update.*" September 30, 2010.

James B.D., Spisak A.B., Colella W.G. Manufacturing Cost Analysis of Stationary Fuel Cell Systems. September 2012. Rev02.

Kanuri, S. High temperature fuel cell (phosphoric acid) manufacturing R&D. Last accessed on 10/15/2014.

https://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/mfg2011_plenary_kanuri.pdf. August 10, 2011

Li, Q. Jensen, J.O. Savinell, R.F. Bjerrum, N.J. High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Progress in Polymer Science 34 (2009) 449–477

Luczak, F. Ternary alloy fuel cell catalysts and phosphoric acid fuel cell containing the catalysts. Patent Number 5,013,618 Date of Patent: May 7, 1991.

Luczak, F. Landsman D. Method for making ternary fuel cell catalysts containing platinum cobalt and chromium. Patent Number: 4,613,582. Sep. 23, 1986.

Mazur, P. Soukup, J. Paidar, M. Bouzek K. Gas diffusion electrodes for high temperature PEM-type fuel cells: role of a polymer binder and method of the catalyst layer deposition. J Appl Electrochem (2011) 41:1013–1019.

Rooijen J.V. "A Life Cycle Assessment of the PureCell[™] Stationary Fuel Cell System: Providing a Guide for Environmental Improvement". A report of the Center for Sustainable Systems, Report No. CSS06-09. June 30th, 2006Salt River Project. Accessed August 2013. http://www.srpnet.com/about/facts.aspx#ownership

Roche, Robert P. "Fluoropolymer laminated separator plate." U.S. Patent No. 5,268,239. 7 Dec. 1993.

Remick, Robert, and Douglas Wheeler. *Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis*. Rep. no. NREL/TP-560-49072. N.p.: National Renewable Energy Laboratory, 2010. Print.

Scanlon, E. Benicewicz, B. Polybenzimidole based segmented block copolymers for high temperature fuel cell membranes. Chem. Soc. Div. Fuel Chem. 2004, 49(2), 522-523.

Schmidt T.J. and Baurmeister, J. Development Status of High Temperature PBI Based Membrane Electrode Assemblies. ECS Transactions, 16 (2) 263-270 (2008)

Seel, D.C. Benicewicz B.C., Xiao, L. Schmidt, T.J. Chapter 19: High-temperature polybenzimidazolebased membranes. *Handbook of Fuel Cells – Fundamentals, Technology and Applications*. Edited by Wolf Vielstich, Harumi Yokokawa, Hubert A. Gasteiger. Volume 5: *Advances in Electocatalysis, Materials, Diagnostics and Durability*. 2009 John Wiley & Sons, Ltd. ISBN: 978-0-470-72311-1.

Steenberg, T. et al. Roll-to-roll coated PBI membranes for high temperature PEM fuel cells. Energy Environ. Sci., 2012, 5, 6076.

Wannek, C. Lehnert, W. Mergel, J. Membrane electrode assemblies for high-temperature polymer electrolyte fuel cells based on *poly*(2,5-benzimidazole) membranes with phosphoric acid impregnation via the catalyst layers. J. of power Sources, 192 (2209): 259-266.

Wei, M. 2014, T. Lipman, et al, "A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications," Lawrence Berkeley National Laboratory Report, October 2014.

Xiao, L. Zhang, H. Choe, E.W. Scanlon, E. Ramanthan, L. Benicewicz, B. Synthesis and characterization of Pyramine-Based polybenzimidazoles as novel fuel cell membrane materials. Fuel Chemistry Division Reprints 2003; 48(1): 447-448.

Xiao, L. Zhang H., Choe, E.W. Scanlon, E. Ramanthan, L. Rogers, D. Apple, T. Benicewicz, B. High temperature polybenzimidazole fuel cell membranes via Sol-Gel process. Chem. Mater., 2005, 17: 5328-5333.

Zhang, Jianlu, et al. "High temperature PEM fuel cells." *Journal of Power Sources* 160.2 (2006): 872-891.

Appendix A: Costing Approach and Considerations

Here we describe the overall costing approach and its underlying inputs and assumptions. Figure A.1(a) below provides a high level description of the costing approach. The starting point is system definition and identification of key subsystems and components. (System definition includes the key subsystems and components of the complete fuel cell system and also includes formulation of functional specifications of stack parameters and stack and system operating characteristics). Manufacturing strategy is then defined to determine which components to purchase and which to manufacture in-house. A detailed parts list is assembled for purchased components and detailed DFMA costing is done for in-house manufactured components. In this work, non-stack components are assumed to be purchased while stack components are assumed to be manufactured in-house. Direct manufacturing costs for the stack are thus captured in the DFMA costing, and a further markup of stack and other system components will include non-manufacturing costs such as General and Administrative, Sales and Marketing, and profit margin to determine the final "factory gate" price to the customer. The general guidelines for purchased-versus-made components or "make vs. buy" are whether the part is readily available as a commodity item or off-the-shelf part. If this is the case, there is little reason to manufacture in-house (e.g. pumps, compressors, electronic components). One informal criterion for purchasing components is whether or not there is an "active market" of buyers and sellers for the component. For example an active market might be defined as one in which there are at least three suppliers and three purchasers, and one in which suppliers do not have undue market power or monopoly power. Clearly there are gray areas where there may be off-the-shelf components available but a high degree of manual assembly is required, and the development of subassemblies available for purchase would more economical. These would probably require more standardized designs or interfaces for both the supplier industry and fuel cell system providers to leverage over time. Similarly, in many cases, a fuel cell supplier will find it cost effective to subcontract the design, manufacturing and/or assembly of a subsystem component to an appropriate manufacturing partner. Development of fuel processor components may follow this model. In this work we take a more simplified approach of "made vs. bought" components, but these considerations do enter into our cost estimates. For example, labor associated with system assembly is assumed to drop with increasing volume with both learning-bydoing and the implicit assumption that there is greater availability of subassemblies. In our analysis, balance of plant components are largely assumed to be purchased components, and stack components are largely manufactured in-house, with carbon fiber paper and Nafion membrane the key exceptions for reasons as described below. Note that a bottom-up DFMA costing was not done for non-stack components and thus further cost reduction may be possible for those components. Vertical integration is assumed for stack manufacturing, i.e. a fuel cell manufacturer is assumed to manufacture all stack components as described below. This assumption is geared toward the case of high volume production. At lower production volume some purchase of finished or partially finished stack components may be cost beneficial because at very low volumes the investment costs for vertical integration is prohibitive and equipment utilization is inefficient.

<u>Step</u>	System Design	Key Outcome	Direct Manufacturing Costs
System		Identification of subsystems	Capital costs
definition		and components	Labor costs
			Materials costs
	Make/Buy Decisions	Differentiation between	Consumables
Manufacturing strategy		purchased and made	Scrap / yield losses
Strategy	Ţ	components	Factory costs
	Multi-level BOM		Global Assumptions
Detailed parts		Estimation of total system	Discount rate, inflation rate
list and costs		"materials" costs, DFMA costing	Tool lifetimes
	\downarrow	Folimation of final factors	Costs of energy, etc.
Est. of final	Rolled-Up Factory Cost	Estimation of final factory gate price incl. labor, G&A,	
system cost		and corporate costs + profit	<u>Other Costs</u>
			R&D costs, G&A, sales, marketing
			Product warranty costs

Figure A.1 (a) Generalized roll-up steps for total system cost; (b) scope of direct manufacturing costs for components produced in-house.

The DFMA analysis includes the following items shown in Figure A.1(b) for direct manufacturing costs, global cost assumptions and other non-product costs. For each manufactured component, first a patent and literature search was done and industry advisor input elicited, followed by selection of a base manufacturing process flow based on these inputs, an assessment of current industry tooling and direction, and engineering judgment as to which process flows can support high volume manufacturing in the future.

Direct manufacturing costs include capital costs, labor, materials, yield loss and factory building costs, subject to global assumptions such as discount rate, inflation rate and tool lifetimes. Our methodology follows other cost studies (James 2012). For each major processing module (e.g. injection molding, or a catalyst coating step), a machine rate is computed corresponding to an annual production volume, where the machine rate comprises capital, operational and building costs and has units of cost per hour for operating a given module. "Process cost" per module is then the product of machine rate and annual operation hours of the tool. Total annualized manufacturing cost is the sum of process cost per module plus required labor and required materials and consumable materials.

Overall manufacturing costs are then quoted as the sum of all module or component costs normalized to the overall production volume in kWe. Direct manufacturing costs are quoted in cost per kWe of production, or, cost per meter squared of material can be quoted similarly for roll-toroll goods such as GDE and PBI-membrane. Other costs such as G&A and sales and marketing are added to the make up the final factory gate price.

A.1. DFMA Costing Model Approach

This section discusses economic analysis used in developing DFMA costing model. This model was adopted from ASHRAE handbook (See Haberl 1994 for more details). Below is the definitions of terms used in developing economic equations:

 C_e = cost of energy to operate the system for one period

C_f= floorspace (building) cost

 C_{labor} = labor rate per hour

C_{s,assess}= initial assessed system value

 $C_{s,salvage}$ = system salvage value at the end of its useful life in constant dollars

 $C_{s \text{ init}}$ = initial system cost

C_y= annualized system cost in constant dollars

 $\mathbf{D}_{k,sl}$ or $\mathbf{D}_{k,SD}$ = amount of depreciation at the end of period k depending on the type of depreciation schedule used, where D_{ksl} is the straight line depreciation method and D_{kSD} represents the sum-of-digits depreciation method in constant dollars

F= future value of a sum of money

i_m**P**_k = interest charge at the end of period *k*

 $i' = (i_d - j)/(1 + j)$ = effective discount rate adjusted for energy inflation;, sometimes called the real discount rate

 $i'' = (i_d - j_e)/(1 + j_e) =$ effective discount rate adjusted for energy inflation j_e

I= annual insurance costs

ITC= investment tax credit for energy efficiency improvements, if applicable

j= general inflation rate per period

j_d= discount rate

*j*_{br} = building depreciation rate

 j_e = general energy inflation rate per period

j_m = average mortgage rate (real rate + general inflation rate)

k= end if period(s) in which replacement(s), repair(s), depreciation, or interest is calculated M= periodic maintenance cost

n= number of period(s) under consideration

P= a sum of money at the present time, *i.e.*, its present value

 P_k = outstanding principle of the loan for C-s, init at the end of period k in current dollars R_k = net replacement(s), repair cost(s), or disposals at the end of period k in constant dollars T_{inc} = (state tax rate + federal tax rate) -(state tax rate X federal tax rate) where tax rates are based on the last dollar earned, i. e, the marginal rates

 T_{prop} = property tax rate

 T_{br} = salvage value of the building

For any proposed capital investment, the capital and interest costs, salvage costs, replacement costs, energy costs, taxes, maintenance costs, insurance costs, interest deductions, depreciation allowances, and other factors must be weighed against the value of the services provided by the system.

Single Payment

Present value or present worth is a common method for analyzing the impact of a future payment on the value of money at the present time. The primary underlying principle is that all monies (those paid now and in the future) should be evaluated according to their present purchasing power. This approach is known as discounting.

The future value *F* of a present sum of money *P* over *n* periods with compound interest rate *i* can be calculated as following:

$$F = p(1+i)^n$$

The present value or present worth *P* or a future sum of money *F* is given by:

$$P = \frac{F}{(1+i)^n} = F \times PWF(i,n)$$

where PWF(*i*,*n*) the worth factor, is defined by:

$$PWF(i,n) = \frac{1}{(1+i)^n}$$

Accounting for Varying Inflation Rates

Inflation is another important economic parameter which accounts for the rise in costs of a commodity over time. Inflation must often be accounted for in an economic evaluation. One way to account for this is to use effective interest rates that account for varying rates of inflation. The effective interest rate *i'*, sometimes called the real rate, accounts for the general inflation rate *j* and the discount rate j_d , and can be expressed as follows (Haberl 1994).):

$$i' = \frac{1+j_d}{1+j} - 1 = \frac{j_d - j_d}{1+j}$$

However, this expression can be adapted to account for energy inflation by considering the general discount rate j_d and the energy inflation rate j_e , thus:

$$j' = \frac{1+j_d}{1+j_e} - 1 = \frac{j_d - j_e}{1+j_e}$$

When considering the effects of varying inflation rates, the above discount equations can be revised to get the following equation for the future value F, using constant currency of an invested sum P with a discount rate j_d under inflation j during n periods:

$$F = P[\frac{1+j_d}{1+j}]^n = P(1+i^{'})^n$$

The present worth *P*, in constant dollars, of a future sum of money *F* with discount rate j_d under inflation rate **j** during **n** periods is then expressed as:

$$P = F / \left[\frac{1 + j_d}{1 + j}\right]^n$$

In constant currency, the present worth P of a sum of money *F* can be expressed with an effective interest rate i', which is adjusted for inflation by:

$$P = \frac{F}{(1 + i')^n} = F \times PWF(i', n)$$

where the effective present worth factor is given by:

$$PWF(i', n) = \frac{1}{(1 + i')^n}$$

Recovering Capital as a Series of Payments

Another important economic concept is the recovery of capital as a series of uniform payments or what so called - the capital recovery factor (CRF). CRF is commonly used to describe periodic uniform mortgage or loan payments and *S* is defined as the ratio of the periodic payment to the total sum being repaid. The discounted sum *S* of such an annual series of payments *Pann* invested over *n* periods with interest rate *i* is given by:

$$S = P_{ann} [1 + (1 + i)^{-n} / i]$$

$$P_{ann} = (S \times i) / [1 + (1 + i)^{-n} / i]$$

$$CRF(i, n) = \frac{i}{[1 - (1 + i)^{-n}]} = \frac{i(1 + i)^{n}}{(1 + i)^{n} - 1}$$

Table A.2 below summarizes some of the mathematical formulas used in calculating these cost components.

$(CRF_{i,init} - ITC)CRF(i', n)$	Capital and Interest
$(C_{s,slv}PWF(i',n)CRF(i',n)(1-T_{salv}))$	Salvage Value
$\sum_{k=1}^{n} [R_{k}PWF(i^{'},k)] CRF(i^{'},n)(1-T_{inc})$	Replacement or Disposal
$C_e[\frac{CRF(i',n)}{CRF(i'',n)}](1-T_{inc})$	Operating Energy
$C_{\rm br} = CRF_m \times c_{fs} \times a_{br}$	Building Cost

$C_{s,assess}T_{prop}(1-T_{inc})$	Property Tax
$M(1-T_{inc})$	Maintenance
$I(1-T_{inc})$	Insurance
$T_{inc} \sum_{k=1}^{n} [j_m P_{k-1} PWF(i_d, k)] CRF(i', n)$	Interest Tax Deduction
$T_{inc} \sum_{k=1}^{n} D_k PWF(i_d, k)] CRF(i', n)$	Depreciation
$P_k = (C_{i,init} - ITC) \left[(1+j_m)^{k-1} \right]$	Principle P_k during year k at market mortgage rate i_m
$P_{k} = (C_{i,init} - ITC) \left[(1 + j_{m})^{k-1} + \frac{(1 + j_{m})^{k-1} - 1}{(1 + j_{m})^{-n} - 1} \right]$	

Table A.2. Cost components and their corresponding mathematical formulas

Discount Rate

The discount rate is expected to have a range of parameters depending on several financial factors including the "investment risk" reflected in the respective cost of equity and debt for a manufacturing company and the company's debt to equity ratio. The impact of the financial crisis is assumed to be neutral with respect to pre-financial crises numbers with a tradeoff in lower risk free rates and increased risk premiums. For the fuel cell industry, the weighted average cost of capital is expected to be in the range of 10-15%⁹. The lower value may be applicable to a supplier of component parts which have unit manufacturing processes which are shared with many other industries e.g., metal stamping or injection molding for bipolar plates. Here however, we adopt the upper range of discount rate based on the assumption that there is a vertically integrated manufacturing concern, industry inputs and an overall leaning to be conservative in overall cost assumptions. Also note that the discount rate, along with several other key global parameters was varied for sensitivity analysis.

A.2. Non-Product Costs

The DFMA cost estimates in Chapter 4 below refer to direct manufacturing costs and exclude profit, research and development (R&D) costs, and other corporate costs (sales and marketing, general and administrative, warranty, etc.).

To better quantify these other non-product costs, financial statements from four publicly traded fuel cell companies were analyzed for the 2008-2011 period (Fuel Cell Energy, Proton Power, Plug Power, and Ballard). Excluding Plug Power, which showed much higher non-product costs than the other companies, median General and Administrative (G&A) and Sales and Marketing costs were 40% of the Cost of Product and Services, and median R&D costs at 38% of Cost of Product and Services. Based on publically available financial statements, gross margins were 20% for Ballard but negative for the other three companies. All four recorded a net loss for all years in this period. Thus a 100% markup in the sales price of a fuel cell system above the manufacturing cost would achieve a slightly positive operating income taking both G&A/Sales and Marketing, and R&D into account. These historical numbers for Sales and Marketing and R&D could be on the high side since these companies are building a market presence and these costs can be expected to drop over time with greater market penetration. A typical sales markup of 50% is expected to approximately cover

⁹ See for example http://www.wikiwealth.com/wacc-analysis:fcel which provides an analysis for Fuel Cell Energy's weighted average cost of capital (WACC).

the G&A/Sales portion of operating expenses for current fuel cell vendors but not R&D expenses. Government policies or incentives could possibly mitigate the R&D expenses portion in some years. Gross margin product markup is also expected to be extremely slim given the existence of highly cost competitive alternative technologies for CHP applications and borne out by the financial data above. These other factors can be seen to increase the direct manufacturing costs by 50% to 100% including profit margin and can be taken as a sensitivity factor in the use-phase model chapter. Note that fuel cell system shipping and delivery costs are not split out separately, but that there is an additional 33% markup assumed for installation costs and all other fees.

A.3. Manufacturing Cost Analysis - Shared Parameters

Shared parameters for the cost analysis are summarized below. Table A.3 shows the cell and stack configurations for CHP system based on the functional specifications described above. The number of cells per system will be used to compute total active area and component volumes in the DFMA section below. Similarly, the plate area and GDE coated area are shown in Table A.4. These cell areas could be expected to change for different applications for optimized product configuration and performance, but at the same time, it is beneficial for manufacturing cost control to have a consolidated cell size in multiple products and that approach was taken here.

System Power [kWe]	Cells/ stack	Stacks	Cells/ system	Single cell power [W]	Gross Power [kWe]
1	21	1	21	60.9	1.28
10	105	2	210	60.0	12.6
50	131	8	1048	59.7	62.6
100	136	15	2040	59	121
250	136	38	5168	59.2	305.8

Table A.3. Summary of cell and stack configuration for CHP systems with reformate fuel. The number of cells per system is used to compute active areas and component volumes in the DFMA section below.

Parameter	CHP HT PEM fuel cell	Unit
Total plate area	720	cm ²
GDE coated area	464	cm ²

Table A.4. Plate and GDE coated area for CHP HT PEM fuel cell system. The former is an input for calculations of plate manufacturing costs and the latter for the membrane and GDE costing analysis.

Parameter	Symbol	Value	Units	Comments
Operating hours	t _{hs}	varies	Hours	8 hours base shift; [1,1.5,2] shifts
Annual Operating	t_{dy}	250	Days	52wks*5days/wk-10 vacation days
Days	5			
Production	A_m	0.85		Typical value in practice
Availability				
Avg. Inflation Rate	j	0.026		US avg. for past 10 years [‡]
Avg. Mortgage Rate j_m 0.05 See following refe		See following reference ****		
Discount Rate	Ĵа	0.15		Per Ballard (suggested >=15%) ^{‡‡}
Energy Inflation Rate	j _e	0.056		US avg of last 3 years ^{###}

Income Tax	i.	0		No net income
	i _i	-		
Property Tax	i _p	0.014		US avg from 2007 [†]
Assessed Value	i _{av}	0		
Salvage Tax	i _s	0		
EOL Salvage Value	k _{eol}	0.02		Assume 2% of end-of-life value
Tool Lifetime	T_t	15	Years	Typical value in practice
Energy Tax Credits	ITC	0	Dollars	
Energy Cost	C _e	0.1	\$/kWhe	Typical U.S. value
Floor space Cost	C_{fs}	1291	\$/m ²	US average for factory ⁺⁺
Building	j _{br}	0.031		BEA rates [†] ^{††}
Depreciation				
Building Recovery	T_{br}	31	Years	BEA rates [†] ^{††}
Building Footprint	a_{br}	Varies	m ²	
Line Speed	Vl	Varies	m/min	Approximation from DTI2010 (James et al.,
				2010)
Web Width	W	Varies	М	Lower widths at low volume
Hourly Labor Cost	C _{labor}	28.08	\$/hr	Hourly wage per worker

tubo
 tu

<u>±±</u> Communications with Ballard Power Systems, Burnaby, B.C., Canada

† http://www.nytimes.com/2007/04/10/business/11leonhardt-avgproptaxrates.html? r=0

⁺⁺ Selinger, B., (2011), "Building Costs," DCEO, Illinois.

ttt http://www.bea.gov/scb/account articles/national/wlth2594/tableC.htm

Table A.5. Manufacturing cost shared parameters.

Manufacturing cost shared parameters are summarized in Table A.5. References are shown in the table and are a mixture of general industry numbers (e.g. annual operating days, inflation rate, tool lifetime) together with fuel cell specific industry assumptions (discount rate, web width, hourly wage).

An annualized cost of tool approach is adopted from Haberl (1994). The annualized cost equation and components are as follows:

$$C_y = C_c + C_r + C_{oc} + C_p + C_{br} + C_i + C_m - C_s - C_{int} - C_{dep}$$

where

 C_y is the total annualized cost C_c is the capital/system cost (with interest) C_r is the replacements or disposal cost C_{oc} is the operating costs (e.g. electricity) excluding labor C_p is the property tax cost C_{br} is the building or floor space cost C_i is the tool insurance cost C_m is the maintenance cost C_s is the end-of-life salvage value C_{int} is the deduction from income tax C_{dep} is the deduction due to tool depreciation

Furthermore, all values are scaled to 2013 dollars. In the current version of the model C_r , the replacements or disposal cost and C_i , the tool insurance cost, are assumed to be zero. We assume no net income for fuel cell manufacturers, as is currently the case for LT PEM manufacturers and thus income tax credits such as interest tax credits do not factor into the calculations. The machine

rate quoted above can be easily found from these annualized cost components (capital cost component, operating cost, and building cost).

A.4. Factory model

Two approaches were pursued: a global factory model with total area dependent on overall volume and including factors for non-production factory space, and secondly by incrementally adding factory area to each specific process module. It was found difficult to keep all modules coordinated in the first case, so later in the work, the factory costing shifted to the second, simpler approach. Factory cost contributions in both cases are found to be very small factors in general, especially as production volumes exceed 1000 systems per year.

A.5. Yield Considerations

As in other costing studies (James 2012) and as will be detailed in the DFMA analysis below, this work assumes that high yield is achieved at high manufacturing volumes. This stems from several implicit assumptions:

- Learning by doing over the cumulative volume of fuel cell component production and greater process optimization will drive yield improvement both within a given vendor, and from vendor to vendor through industry interactions (conferences, IP, cross vendor personnel transfers, etc.)
- Inline inspection improvement with greater inspection sensitivity and more accurate response to defects and inline signals.
- Greater development and utilization of "transfer functions" (Manhattan Projection 2011), e.g., development of models that relate inline metrics and measurements to output responses and performance, and resultant improvement in inline response sensitivity and process control
- Utilization of greater feedback systems in manufacturing processing such as feed-forward sampling, for real time adjustment of process parameters (for example, slot die coating thickness and process parameter control).
- Systematic, integrated analysis to anticipate and prepare for yield excursions e.g., FMEA (failure modes and effect analysis).

Consideration of yield limiting mechanisms or FMEA-type analysis as a function of process tooling assumptions are out of scope here and would be very challenging in this type of analysis project without access to manufacturing data.

A.6. Initial Tool Sizing

The choice of initial tool sizing was governed by several factors. In some cases it was made on the basis of tool availability and in other cases it was dependent on the choice of batch sizes with smaller batch sizes leading to smaller tools. In general however, tooling decisions were made to support medium to high volume manufacturing of greater than 10 kWe and 1,000 systems per year. This choice was made on the basis of assuming that vertically integrated manufacturing would not be done for small volumes e.g. 100 kWe of total production a year. A cost optimized process for low volume manufacturing would have a very different mix of automated versus manual production lines as well as in-house manufactured versus purchased components. Nor was a detailed optimization study of low volume manufacturing a key priority for this work. Production volumes might also be expected to grow if sales of fuel-cell vehicles drive increased demand for fuel cell stack components.

A.7. Time-frame for Cost Analysis

The cost analysis utilizes largely existing manufacturing equipment technologies and existing materials with key exceptions noted (e.g., injection molding composite material for bipolar plates). It does not assume new high-speed manufacturing processes nor major fuel-cell technology advances such as much lower cost catalysts or membranes. The analysis is thus a "potential cost reduction" study for future costs with existing tools and mostly existing materials. The study assumes that higher overall volumes will drive significant improvements in yield, but it is not a market adoption or market penetration study and therefore timelines will vary according to the assumptions made for market adoption. Stationary fuel cell systems may also benefit from growth in the transportation sector and higher volumes achieved for fuel cell components in that sector over the next few years may reduce the cost of components for stationary applications (e.g., GDE, membranes, metal plates, etc.).

Appendix B: DFMA Manufacturing Cost Analysis

B.1. Polybenzimidazol88 (PBI) based membranes

Stack parameters and assumptions

Stack parameters and assumptions for a 100kW HT PEMFC system are shown in Table B.1 below. Line utilization is seen to be low until the 10000 systems per year manufacturing level. Note that line utilization applies to all process modules, since the process flow is a continuous process.

Power (kW)	wer (kW) 100					
Lines	1	1	7	29		
Stacks/Yr	100	1,000	10,000	50,000		
Scrap	14%	10%	7%	6%		
Overall Yield	86%	90%	93%	94%		
Line Speed (m/s)	0.0067	0.0100	0.0100	0.0100		
Line Speed (m/min)	0.4	0.6	0.6	0.6		
Line Utilization	20.05%	73.59%	85.65%	99.42%		
Number of MEA cells	2040	2040	2040	2040		
Membrane Actual Area (m ²)	9.46E+03	9.46E+04	9.46E+05	4.73E+06		
Membrane Used Area (m ²)	1.10E+04	1.05E+05	1.02E+06	5.03E+06		
Web Width (m)	0.54	0.90	0.90	0.90		
No of Rolls	110	1051	10168	50295		
Installation factor	1.10	1.10	1.10	1.10		
Avg. Availability	0.85	0.85	0.98	0.99		
Max Annual Area (m²)	63769.42	158630.40	1276387.44	5381850.89		
Annual Operation Hours (No setup)	981.55	3602.88	4820.27	5694.44		
Annual Operation Hours (+setup time)	1052.55	3860.88	5165.27	6101.44		
Machine/Worker	2	2	8	30		
Worker Rate	29.81	29.81	29.81	29.81		
Slot-die Machine Footprint	40.61	40.61	284.25	1177.59		

Table B.1. Stack parameters and assumptions for a 100kW system.

Module	Total Cost
Slot Die coater	\$723,000
IR Oven	\$180,000
Mixing and Pumping System	102,000
Quality Control System	\$175,000
Wind/Unwind System	\$170,000

Viscometer (not included in Conquip quote)	\$6,000
Installation	\$135,600
Total	\$1,491,600

Table B.2. Overall Process Equipment Cost by Module for slot die casting machine.

Machine Rates by Module

Machine rates for the slot-die coater are shown below for the 100kW base system.

Slot-Die Coater and IR oven:

Some important assumptions for slot-die coater are:

- Maintenance factor per James et al., (2010)
- Power consumption (5kW for slot-die coater and 50kW for IR oven based on machine specifications from EuroTech.)
- Machine footprint based on web width and line length and assumed cleanroom 1000 class for slot die-coater and IR oven.
- Initial system cost assumes installation costs are 10% of capital cost (based on EuroTech & Conquip estimates)
- Salvage value is the amortized end-of-life value of the tool.
- Property tax is proportional to the machine capital.

Systems/yr	100	1,000	10,000	50,000
Line Speed (m/min)	0.402	0.600	0.600	0.600
Maintenance factor	0.10	0.10	0.10	0.10
Auxiliary Costs Factor	0	0	0	0
Power Consumption (kW)	5	5	5	5
Machine Footprint (m ²)	20.40	20.40	142.80	591.60
Initial Capital	723000	723000	5061000	20967000
Initial System Cost	795300	795300	5567100	23063700
Annual Depreciation	47236	47236	330652	1369844
Annual Cap Payment	117304.55	117304.55	821131.87	3401832.05
Auxiliary Costs	0	0	0	0
Maintenance	10664.05	10664.05	74648.35	309257.46
Salvage Value	1305.81	1305.81	9140.69	37868.59
Energy Costs	1258.72	4617.12	43239.02	211600
Property Tax	3990.96	3990.96	27936.72	115737.84
Building Costs	1640.53	1640.53	11483.72	47575.41
Machine Rate (\$/hr)	126.89	35.46	187.66	663.47
Capital (\$/hr)	110.21	30.04	157.20	551.34
Variable (\$/hr)	11.33	3.96	22.82	85.37
Building (\$/hr)	5.35	1.46	7.63	26.77

Table B.3. Machine rates for slot-die coater.

Systems/yr	100	1,000	10,000	50,000
Line Speed (m/min)	0.402	0.600	0.600	0.600
Maintenance factor	0.10	0.10	0.10	0.10
Auxiliary Costs Factor	0	0	0	0
Power Consumption (kW)	50.00	50.00	50.00	50.00
Machine Footprint (m2)	20.40	20.40	142.80	591.60
Initial Capital	180000	180000	1260000	5220000
Initial System Cost	198000	198000.00	1386000	5742000
Annual Depreciation	11760	11760	82320	341040
Annual Cap Payment	29204.45	29204.45	204431.17	846929.14
Auxiliary Costs	0	0	0	0
Maintenance	2654.95	2654.95	18584.65	76993.56
Salvage Value	325.10	325.10	2275.69	9427.86
Energy Costs	12587.15	46171.24	432390.20	2115999.99
Property Tax	993.60	993.60	6955.20	28814.40
Building Costs	3281.06	3281.06	22967.44	95150.81
Machine Rate (\$/hr)	45.98	21.23	132.24	517.00
Capital (\$/hr)	27.44	7.48	39.14	137.26
Variable (\$/hr)	14.48	12.65	87.31	359.42
Building (\$/hr)	4.06	1.11	5.79	20.32

Table B.4. Machine rates for IR oven.

Systems/yr	100	1,000	10,000	50,000
Maintenance factor	0.10	0.10	0.10	0.10
Auxiliary Costs Factor	0	0	0	0
Power Consumption (kW)	4.00	4.00	4.00	4.00
Machine Footprint (m2)	1.62	1.62	11.34	46.98
Initial Capital	102000	102000	714000	2958000
Initial System Cost	112200	112200	785400	3253800
Annual Depreciation	6664	6664	46648	193256
Annual Cap Payment	16549.19	16549.19	115844.33	479926.51
Auxiliary Costs	0	0	0	0
Maintenance	1504.47	1504.47	10531.30	43629.68
Salvage Value	184.22	184.22	1289.56	5342.46
Energy Costs	503.49	1846.85	17295.61	84640.00
Property Tax	563.04	563.04	3941.28	16328.16
Building Costs	1093.69	1093.69	7655.81	31716.94
Machine Rate (\$/hr)	19.03	5.54	29.81	106.68
Capital (\$/hr)	15.55	4.24	22.18	77.78

Variable (\$/hr)	1.91	0.87	5.39	21.02
Building (\$/hr)	1.57	0.43	2.25	7.87

Table B.5. Machine rate of the Mixing and Pumping System

Systems/yr	100	1,000	10,000	50,000
Maintenance factor	0.10	0.10	0.10	0.10
Auxiliary Costs Factor	0	0	0	0
Power Consumption	15.00	15.00	15.00	15.00
Machine Footprint (m2)	9.72	16.20	113.40	469.80
Initial Capital	181000	181000	1267000	5249000
Initial System Cost	199100	199100	1393700	5773900
Annual Depreciation	11825.33	11825.33	82777.33	342934.67
Annual Cap Payment	29366.70	29366.70	205566.90	851634.30
Auxiliary Costs	0	0	0	0
Maintenance	2669.70	2669.70	18687.90	77421.30
Salvage Value	980.71	980.71	6865.00	28440.72
Energy Costs	5664.22	20777.06	194575.59	952200.00
Property Tax	999.12	999.12	6993.84	28974.48
Building Costs	1640.53	1640.53	11483.72	47575.41
Machine Rate (\$/hr)	37.39	14.11	83.33	316.21
Capital (\$/hr)	26.97	7.35	38.47	134.92
Variable (\$/hr)	7.92	6.07	41.29	168.75
Building (\$/hr)	2.51	0.68	3.58	12.55

Table B.6. Machine rate of the Quality Control Unit (XRF or Optical Unit)+ Viscosity Meter

Systems/yr	100	1,000	10,000	50,000
Maintenance factor	0.10	0.10	0.10	0.10
Auxiliary Costs Factor	0	0	0	0
Power Consumption	10.00	10.00	10.00	10.00
Machine Footprint (m2)	3.00	3.00	21.00	87.00
Initial Capital	170000.00	170000.00	1190000.00	4930000.00
Initial System Cost	187000.00	187000.00	1309000.00	5423000.00
Annual Depreciation	11106.67	11106.67	77746.67	322093.33
Annual Cap Payment	27581.98	27581.98	193073.88	799877.52
Auxiliary Costs	0	0	0	0
Maintenance	2507.45	2507.45	17552.17	72716.14
Salvage Value	307.04	307.04	2149.26	8904.09
Energy Costs	1258.72	4617.12	43239.02	211600.00
Property Tax	938.40	938.40	6568.80	27213.60

Building Costs	2920.15	2920.15	20441.02	84684.22
Machine Rate (\$/hr)	33.16	9.91	53.96	194.57
Capital (\$/hr)	25.91	7.06	36.96	129.64
Variable (\$/hr)	3.58	1.85	11.77	46.60
Building (\$/hr)	3.67	1.00	5.23	18.34

Table B.7. Machine rate of the Wind/Unwind Tensioners

Systems/yr	100	1,000	10,000	50,000
Lines	1	5	43	210
Adjusted No. of lines	1	1	3	11
Maintenance factor	0.10	0.10	0.10	0.10
Auxiliary Costs Factor	0	0	0	0
Required doping time (days)	110	240	240	240
Power Consumption (kW)	5	5	15	55
Machine Footprint (m2)	30.00	150.00	1290.00	6300.00
Initial Capital	36000	36000	108000	396000
Initial System Cost	39600	39600	118800	435600
Annual depreciation	2352.00	2352.00	7056.00	25872.00
Annual Cap Payment	5840.89	5840.89	17522.67	64249.80
Auxiliary Costs	0	0	0	0
Maintenance	530.99	530.99	1592.97	5840.89
Salvage Value	65.02	65.02	195.06	715.22
Energy Costs	1578.55	3444.12	30997.04	416737.92
Property Tax	198.72	198.72	596.16	2185.92
Building Costs	10575.96	10575.96	74031.71	306702.79
Machine Rate (\$/hr)	17.73	5.32	24.11	130.30
Capital (\$/hr)	5.49	1.50	3.35	10.41
Variable (\$/hr)	2.00	1.03	6.31	69.26
Building (\$/hr)	10.24	2.79	14.45	50.63

Table B.8. Machine rate of the doping station

Gas Diffusion Electrodes

Ink preparation method

Ink preparation method based on UTC patent (US patent #4,613,582) is described briefly here. A precise amount of the commercially available high surface area platinum-on-graphitized-carbonblack (containing 10% platinum by weight) is dispersed in distilled water followed by ultrasonic blending for about 15 minutes. The pH should be monitored and adjusted to about 8 with dilute ammonium hydroxide solution to aid in the dispersion of the supported catalyst. Continuous stirring is necessary to ensure uniformity of the solution/slurry at all times. After that a solution of ammonium chromate dissolved in water is then added to the pH-adjusted solution. Following this addition the pH should be maintained around 5.5 by addition of dilute hydrochloric acid to facilitate adsorption of the chromium onto the platinum. The solution is then stirred, to intimately contact the platinum-on-graphitized-carbon black and the chromium salt, for about 15 minutes. A separate solution of cobaltous nitrate in distilled water is then added to the above acidic solution. Both the ammonium chromate and cobaltous nitrate are added as solutions to enhance the dispersion of these metals onto the catalyst, while the stirring brings the metals into the intimate contact required for proper adsorption onto the supported platinum catalyst. The pH should be maintained at about 5.5 by incremental additions of dilute hydrochloric acid. Stirring is employed during this procedure and continued for about 15 minutes after the addition, to intimately contact all the constituents. After that the solid is dried at about 90° C. and sifted through an 80 mesh screen. The sifted solids were then heat treated at about 900°C in controlled nitrogen-rich environment for 1 hour to form the platinum chromium-cobalt alloy catalyst. The catalyst prepared according to this method, which showed an increase in catalytic activity should have a metallic composition comprising cobalt 11.3% by weight, chromium 8.9% by weight with the balance being platinum for optimal conductivity and performance.

Power (kW)		1()0	
Lines	1	1	3	13
Systems/Yr	100	1000	10000	50000
Scrap	4%	0.030	0.020	0.010
Overall Yield	96.00%	97.00%	98.00%	99.00%
Line Utilization	5.05%	49.49%	87.02%	94.37%
Number of MEA cells	2040	2040	2040	2040
GDE Actual Area (m ²)	18910.80	189108.00	1891080.00	9455400.00
GDE Area (m²)	24623.44	243695.88	2412091.84	11938636.36
Web Width (m)	0.54	0.54	0.90	0.90
Power density (kW/m²)	4.39	4.39	4.39	4.39
Theoritical Membrane area (m ²)	2277.90	22779.04	227790.43	1138952.16
% of inactive area	10%	10%	10%	10%
% of scrap rate	10%	10%	10%	10%
Actual GDE Area (m²)	2.81E+03	2.81E+04	2.81E+05	1.41E+06
Installation factor	1.10	1.10	1.10	1.10
Avg. Availability	0.85	0.85	0.95	0.99
Max Annual Area (m2)	6.35E+05	6.35E+05	3.54E+06	1.60E+07
Annual Operation Hours (No setup)	131.94	1292.35	2532.22	2863.06
Annual Operation Hours (+setup time)	141.94	1385.35	2713.22	3068.06
Machine/Worker	2	2	6	26
Worker Rate	29.81	29.81	29.81	29.81

Machine Rates for GDE Coating Process

Machine Footprint	50.4	50.4	151.2	655.2
-------------------	------	------	-------	-------

Table B.9. GDE coating line parameters and assumptions for a 100kW system.

Module	Total Cost for slot-die coating line
Slot Die coater	\$1,521,000
IR Oven	\$360,000
Mixing and Pumping System	204000
Quality Control System	\$850,000
Wind/Unwind System	\$645,000
Viscometer (not included in Conquip quote)	\$6,000
Installation	\$390,000
Total	\$3,976,000

Table B.10. Overall Process Equipment Cost by Module for GDE coating line.

Systems/yr	100	1,000	10,000	50,000
Line Speed (m/min)	6	6	6	6
Maintenance factor	0.10	0.10	0.10	0.10
Auxiliary Costs Factor	0	0	0	0
Power Consumption	5	5	5	5
Machine Footprint (m ²)	20.40	20.40	61.20	265.20
Initial Capital	723000	723000	2169000	9399000
Initial System Cost	795300	795300	2385900	10338900
Annual Depreciation	47236	47236	141708	614068
Annual Cap Payment	117304.55	117304.55	351913.66	1524959.20
Auxiliary Costs	0	0	0	0
Maintenance	10664.05	10664.05	31992.15	138632.65
Salvage Value	1305.81	1305.81	3917.44	16975.57
Energy Costs	169.74	1656.70	9734.00	47697.22
Property Tax	3990.96	3990.96	11972.88	51882.48
Building Costs	5083.90	5083.90	15251.69	66090.64
Machine Rate (\$/hr)	957.49	99.18	153.67	590.69
Capital (\$/hr)	817.23	83.73	128.26	491.51
Variable (\$/hr)	76.33	8.89	15.38	60.73
Building (\$/hr)	63.93	6.55	10.03	38.45

Table B.11. Machine rate of the Slot-die coater

Systems/yr	100	1,000	10,000	50,000
Line Speed (m/min)	6.0	6.0	6.0	6.0
Maintenance factor	0.10	0.10	0.10	0.10
Auxiliary Costs Factor	0.00	0.00	0.00	0.00
Power Consumption	50.00	50.00	50.00	50.00
Machine Footprint (m ²)	20.40	20.40	61.20	265.20
Initial Capital	180000	180000	540000	2340000
Initial System Cost	198000	198000	594000	2574000
Annual Depreciation	11760	11760	35280	152880
Annual Cap Payment	29204.45	29204.45	87613.36	379657.89
Auxiliary Costs	0	0	0	0
Maintenance	2654.95	2654.95	7964.85	34514.35
Salvage Value	325.10	325.10	975.30	4226.28
Energy Costs	1697.44	16567.03	97340.03	476972.16
Property Tax	993.60	993.60	2980.80	12916.80
Building Costs	10167.79	10167.79	30503.37	132181.28
Machine Rate (\$/hr)	312.76	42.78	83.08	336.37
Capital (\$/hr)	203.46	20.85	31.93	122.37
Variable (\$/hr)	30.66	13.88	38.81	166.71
Building (\$/hr)	78.63	8.06	12.34	47.29
	B.12. Machine ra			
Systems/yr	100	1,000	10,000	50,000
Maintenance factor	0.10	0.10	0.10	0.10

Systems/yr	100	1,000	10,000	50,000
Maintenance factor	0.10	0.10	0.10	0.10
Auxiliary Costs Factor	0	0	0	0
Power Consumption (kW)	4	4	4	4
Machine Footprint (m2)	1.62	1.62	4.86	21.06
Initial Capital	102000	102000	306000	1326000
Initial System Cost	112200	112200	336600	1458600
Annual Depreciation	6664	6664	19992	86632
Annual Cap Payment	16549.19	16549.19	49647.57	215139.47
Auxiliary Costs	0	0	0	0
Maintenance	1504.47	1504.47	4513.42	19558.13
Salvage Value	184.22	184.22	552.67	2394.89
Energy Costs	67.90	662.68	3893.60	19078.89
Property Tax	563.04	563.04	1689.12	7319.52
Building Costs	5083.90	5083.90	15251.69	66090.64
Machine Rate (\$/hr)	166.15	17.45	27.44	105.86
Capital (\$/hr)	115.29	11.81	18.09	69.34
Variable (\$/hr)	11.08	1.56	3.10	12.59

Table B.13. Machine rate of the Mixing and Pumping System						
Systems/yr	100	1,000	10,000	50,000		
Maintenance factor	0.10	0.10	0.10	0.10		
Auxiliary Costs Factor	0	0	0	0		
Power Consumption (kW)	15	15	15	15		
Machine Footprint (m2)	9.72	9.72	48.60	210.60		
Initial Capital	181000	181000	543000	2353000		
Initial System Cost	199100	199100	597300	2588300		
Annual Depreciation	11825	11825	35476	153729		
Annual Cap Payment	29367	29367	88100	381767		
Auxiliary Costs	0	0	0	0		
Maintenance	8009.10	8009.10	24027.30	104118.30		
Salvage Value	980.71	980.71	2942.14	12749.29		
Energy Costs	763.85	7455.16	43803.01	214637.47		
Property Tax	999.12	999.12	2997.36	12988.56		
Building Costs	10167.79	10167.79	30503.37	132181.28		
Machine Rate (\$/hr)	340.46	39.71	68.73	271.49		
Capital (\$/hr)	199.98	20.49	31.39	120.28		
Variable (\$/hr)	61.81	11.16	25.00	103.89		
Building (\$/hr)	78.67	8.06	12.35	47.32		

Table B.13. Machine rate of the Mixing and Pumping System

4.08

6.24

23.93

39.78

Building (\$/hr)

Table B.14. Machine rate of the Quality Control Unit (XRF or Optical Unit)

Systems/yr	100	1,000	10,000	50,000
Maintenance factor	0.10	0.10	0.10	0.10
Auxiliary Costs Factor	0	0	0	0
Power Consumption	10	10	10	10
Machine Footprint (m2)	1.62	1.62	8.10	35.10
Initial Capital	170000	170000	510000	2210000
Initial System Cost	187000	187000	561000	2431000
Annual Depreciation	11106.67	11106.67	33320.00	144386.67
Annual Cap Payment	27581.98	27581.98	82745.95	358565.79
Auxiliary Costs	0	0	0	0
Maintenance	2507.45	2507.45	7522.36	32596.89
Salvage Value	307.04	307.04	921.11	3991.49
Energy Costs	169.74	1656.70	9734.00	47697.22
Property Tax	938.40	938.40	2815.20	12199.20
Building Costs	10167.79	10167.79	30503.37	132181.28
Machine Rate (\$/hr)	289.26	30.71	48.80	188.80

Capital (\$/hr)	192.16	19.69	30.16	115.57
Variable (\$/hr)	18.86	3.01	6.36	26.17
Building (\$/hr)	78.24	8.02	12.28	47.06

Table B.15. Machine rate of the Wind/Unwind Tensioners

MEA Frame/Seal

Power (kW)		1	100	
Lines	1	4	33	163
Stacks/Yr	100	1,000	10,000	50,000
No. Cells	204000	2040000	20400000	102000000
Overall Yield	0.985	0.999	0.999	0.999
New Yield	0.7883	0.7992	0.7992	0.7992
Line Utilization	96.6%	84.4%	98.71%	99.53%
Cycle time (min/part)	0.83	0.33	0.33	0.33
Configuration	А	В	В	В
Installation factor	1.4	1.4	1.4	1.4
Avg. Availability	0.850	0.960	0.995	0.999
Annual Operation Hours	3382.85	11815.10	114006.86	567799.74
Frame Scrap	0.555	0.555	0.555	0.555
Setup Time (hrs)	0	0	0	0
Hours per shift	7	7	7	7
No. shifts	2	2	2	2
Workers per shift	1	3	9	22
Annual Worker hours	3500	10500	31500	77000
Worker Rate	28.08	28.08	28.08	28.08
Machine Footprint (m²)	42	168	1386	6846
Building Footprint	7400	18700	120300	561900
Leased Amount	0	0	0	0
Space Fraction	0.02196173	0.0579095	0.20583191	0.279832516
Building Cost	13466.17	89729.91	2051748.4	13028756.97

Table B.16. MEA frame/seal line parameters and assumptions for a 100kW system

Systems/yr	100	1,000	10,000	50,000
Cycle time	6	6	6	6
Maintenance factor	0.1	0.1	0.1	0.1
Auxiliary Costs Factor	0	0	0	0
Power Consumption	5	5	5	5

Initial Capital	63882.48	255529.92	2108121.84	10412844.24
Initial System Cost	89435.472	357741.888	2951370.58	14577981.94
Annual Depreciation	4173.65536	16694.6214	137730.627	680305.8237
Annual Cap Payment	12887.10	51548.41	425274.42	2100597.91
Auxiliary Costs	0	0	0	0
Maintenance	920.51	3682.03	30376.74	150042.71
Salvage Value	122.31	489.25	4036.33	19937.02
Energy Costs	201.56	1988.06	19880.63	99403.17
Property Tax	357.74	1430.97	11805.48	58311.93
Space Fraction	0	0	0	0
Building Costs	0	0	0	0
Machine Rate (\$/hr)	4.21	4.92	4.24	4.21
Capital (\$/hr)	3.88	4.44	3.80	3.77
Variable (\$/hr)	0.33	0.48	0.44	0.44
Building (\$/hr)	0.00	0.00	0.00	0.00

Table B.17. Machine Rate for the Membrane Roll

Systems/yr	100	1,000	10,000	50,000
Cycle time	6	6	6	6
Maintenance factor	0.1	0.1	0.1	0.1
Auxiliary Costs Factor	0	0	0	0
Power Consumption	5	5	5	5
Initial Capital	63882.48	255529.92	2108121.84	10412844.24
Initial System Cost	89435.472	357741.888	2951370.58	14577981.94
Annual Depreciation	4173.65536	16694.6214	137730.627	680305.8237
Annual Cap Payment	12887.10	51548.41	425274.42	2100597.91
Auxiliary Costs	0.00	0.00	0.00	0.00
Maintenance	920.51	3682.03	30376.74	150042.71
Salvage Value	122.31	489.25	4036.33	19937.02
Energy Costs	201.56	1988.06	19880.63	99403.17
Property Tax	357.74	1430.97	11805.48	58311.93
Space Fraction	0	0	0	0
Building Costs	0	0	0	0
Machine Rate (\$/hr)	4.21	4.92	4.24	4.21
Capital (\$/hr)	3.88	4.44	3.80	3.77
Variable (\$/hr)	0.33	0.48	0.44	0.44
Building (\$/hr)	0.00	0.00	0.00	0.00

Table B.18. Machine Rate for the GDE Anode Roll

Systems/yr	100	1,000	10,000	50,000
Cycle time	6	6	6	6
Maintenance factor	0.1	0.1	0.1	0.1
Auxiliary Costs	0	0	0	0
Factor				
Power Consumption	5	5	5	5
Initial Capital	63882.48	255529.92	2108121.84	10412844.24
Initial System Cost	89435.472	357741.888	2951370.58	14577981.94
Annual Depreciation	4173.65536	16694.6214	137730.627	680305.8237
Annual Cap Payment	12887.10	51548.41	425274.42	2100597.91
Auxiliary Costs	0	0	0	0
Maintenance	920.51	3682.03	30376.74	150042.71
Salvage Value	122.31	489.25	4036.33	19937.02
Energy Costs	201.56	1988.06	19880.63	99403.17
Property Tax	357.74	1430.97	11805.48	58311.93
Space Fraction	0	0	0	0
Building Costs	0	0	0	0
Machine Rate (\$/hr)	4.21	4.92	4.24	4.21
Capital (\$/hr)	3.88	4.44	3.80	3.77
Variable (\$/hr)	0.33	0.48	0.44	0.44
Building (\$/hr)	0.00	0.00	0.00	0.00

Table B.19. Machine Rate for the GDE Cathode Roll

Systems/yr	100	1,000	10,000	50,000
Cycle time	10	10	10	10
Maintenance factor	0.1	0.1	0.1	0.1
Auxiliary Costs Factor	0	0	0	0
Power Consumption	7.5	7.5	7.5	7.5
Initial Capital	95823.72	383294.88	3162182.76	15619266.36
Initial System Cost	134153.208	536612.832	4427055.86	21866972.9
Annual Depreciation	6260.48304	25041.9322	206595.94	1020458.736
Annual Cap Payment	19330.66	77322.62	637911.63	3150896.86
Auxiliary Costs	0	0	0	0
Maintenance	1380.76	5523.04	45565.12	225064.06
Salvage Value	183.47	733.88	6054.49	29905.52
Energy Costs	1007.79	9940.32	99403.17	497015.84
Property Tax	536.61	2146.45	17708.22	87467.89
Space Fraction	0	0	0	0
Building Costs	0	0	0	0

Machine Rate (\$/hr)	6.52	7.97	6.97	6.92
Capital (\$/hr)	5.82	6.66	5.70	5.65
Variable (\$/hr)	0.71	1.31	1.27	1.27
Building (\$/hr)	0	0	0	0

Systems/yr	100	1,000	10,000	50,000
Cycle time	15	15	15	15
Maintenance factor	0.15	0.15	0.15	0.15
Auxiliary Costs Factor	0	0	0	0
Power Consumption	15	15	15	15
Initial Capital	90500.18	362000.72	2986505.94	14751529.34
Initial System Cost	126700.252	506801.008	4181108.32	20652141.08
Annual Depreciation	5912.67843	23650.7137	195118.388	963766.5835
Annual Cap Payment	18256.73	73026.92	602472.10	2975847.04
Auxiliary Costs	0	0	0	0
Maintenance	1956.08	7824.31	64550.58	318840.75
Salvage Value	173.28	693.11	5718.13	28244.10
Energy Costs	1511.68	14910.48	149104.75	745523.76
Property Tax	506.80	2027.20	16724.43	82608.56
Space Fraction	0	0	0	0
Building Costs	0	0	0	0
Machine Rate (\$/hr)	6.52	8.22	7.26	7.21
Capital (\$/hr)	5.50	6.29	5.38	5.34
Variable (\$/hr)	1.03	1.92	1.87	1.87
Building (\$/hr)	0	0	0	0

Table B.21. Machine Rate for the Robotic Arm

Systems/yr	100	1,000	10,000	50,000
Cycle time	20	20	20	20
Maintenance factor	0.15	0.15	0.15	0.15
Auxiliary Costs Factor	0	0	0	0
Power Consumption	15	15	15	15
Initial Capital	106470.8	425883.2	3513536.4	17354740.4
Initial System Cost	149059.12	596236.48	4918950.96	24296636.56
Annual Depreciation	6956.09227	27824.3691	229551.045	1133843.039
Annual Cap Payment	21478.51	85914.02	708790.71	3500996.52
Auxiliary Costs	0	0	0	0

Maintenance	2301.27	9205.07	75941.86	375106.77
Salvage Value	203.85	815.42	6727.21	33228.36
Energy Costs	2015.58	19880.63	198806.34	994031.68
Property Tax	596.24	2384.95	19675.80	97186.55
Space Fraction	0	0	0	0
Building Costs	0	0	0	0
Machine Rate (\$/hr)	7.74	9.87	8.74	8.69
Capital (\$/hr)	6.47	7.40	6.33	6.28
Variable (\$/hr)	1.28	2.46	2.41	2.41
Building (\$/hr)	0	0	0	0

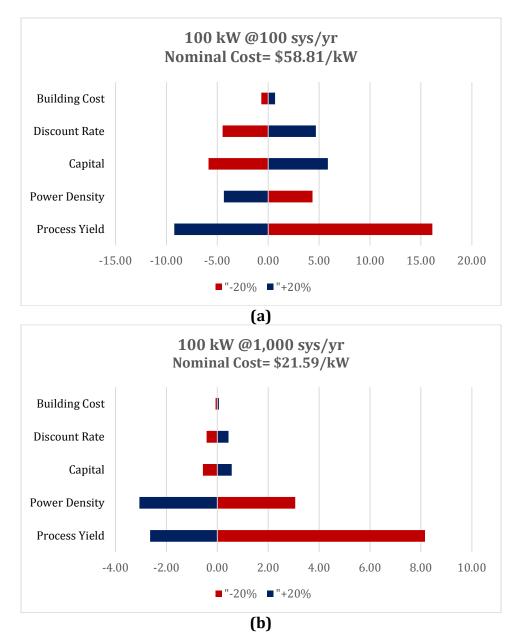
Table B.22. Machine Rate for the 7-axis Arm

Systems/yr	100	1,000	10,000	50,000
Cycle time	30	30	30	30
Maintenance factor	0.1	0.1	0.1	0.1
Auxiliary Costs Factor	0	0	0	0
Power Consumption	17.5	17.5	17.5	17.5
Initial Capital	106470.8	851766.4	7027072.8	34709480.8
Initial System Cost	149059.12	1192472.96	9837901.92	48593273.12
Annual Depreciation	6956.09227	55648.7381	459102.09	2267686.079
Annual Cap Payment	21478.51	171828.05	1417581.41	7001993.03
Auxiliary Costs	0.00	0.00	0.00	0.00
Maintenance	1534.18	12273.43	101255.82	500142.36
Salvage Value	203.85	1630.84	13454.43	66456.72
Energy Costs	3527.26	34791.11	347911.09	1739555.44
Property Tax	596.24	4769.89	39351.61	194373.09
Space Fraction	0.000E+00	0.000E+00	0.000E+00	0.000E+00
Building Costs	0.00	0.00	0.00	0.00
Machine Rate (\$/hr)	7.96	18.79	16.60	16.50
Capital (\$/hr)	6.47	14.81	12.66	12.56
Variable (\$/hr)	1.50	3.98	3.94	3.94
Building (\$/hr)	0	0	0	0

Table B.23. Machine Rate for the Hot Press

Systems/yr	100	1,000	10,000	50,000
Cycle time	5	5	5	5
Maintenance factor	0.1	0.1	0.1	0.1
Auxiliary Costs Factor	0	0	0	0
Power Consumption	10	10	10	10

Initial Capital	53235.4	212941.6	1756768.2	8677370.2
Initial System Cost	74529.56	298118.24	2459475.48	12148318.28
Annual Depreciation	3478.04613	13912.1845	114775.522	566921.5197
Annual Cap Payment	10739.25	42957.01	354395.35	1750498.26
Auxiliary Costs	0	0	0	0
Maintenance	767.09	3068.36	25313.95	125035.59
Salvage Value	101.93	407.71	3363.61	16614.18
Energy Costs	335.93	3313.44	33134.39	165671.95
Property Tax	298.12	1192.47	9837.90	48593.27
Space Fraction	0	0	0	0
Building Costs	0.00	0.00	0.00	0.00
Machine Rate (\$/hr)	3.56	4.24	3.68	3.65
Capital (\$/hr)	3.23	3.70	3.17	3.14
Variable (\$/hr)	0.33	0.54	0.51	0.51
Building (\$/hr)	0	0	0	0


Table B.24. Machine Rate for the Final Blank Press

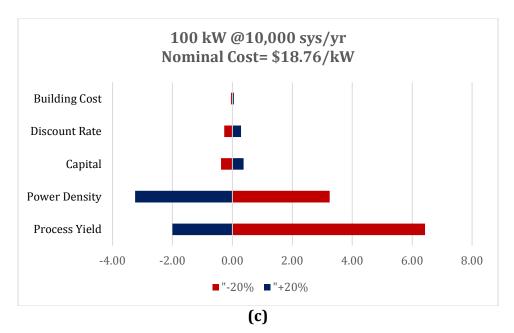

Systems/yr	100	1,000	10,000	50,000
Cycle time	2	2	2	2
Maintenance factor	0.05	0.05	0.05	0.05
Auxiliary Costs	0	0	0	0
Factor	2	2	2	2
Power Consumption	2	2	2	2
Initial Capital	15970.62	63882.48	527030.46	2603211.06
Initial System Cost	22358.868	89435.472	737842.644	3644495.484
Annual Depreciation	1043.41384	4173.65536	34432.6567	170076.4559
Annual Cap Payment	3221.78	12887.10	106318.61	525149.48
Auxiliary Costs	0	0	0	0
Maintenance	115.06	460.25	3797.09	18755.34
Salvage Value	30.58	122.31	1009.08	4984.25
Energy Costs	26.87	265.08	2650.75	13253.76
Property Tax	89.44	357.74	2951.37	14577.98
Space Fraction	0	0	0	0
Building Costs	0	0	0	0
Machine Rate (\$/hr)	1.01	1.17	1.01	1.00
Capital (\$/hr)	0.97	1.11	0.95	0.94
Variable (\$/hr)	0.04	0.06	0.06	0.06
Building (\$/hr)	0	0	0	0

Table B.25. Machine Rate for the Unload MEA Tray

Sensitivity Analysis for Stack modules

The impact of changing several parameters on the stack modules is calculated for a ±20% change in the sensitivity parameter being varied. Figures B.1 to B.4 show sensitivity analysis results expressed in \$/kWe for PBI membrane, GDE, frame/seal and plates, respectively.

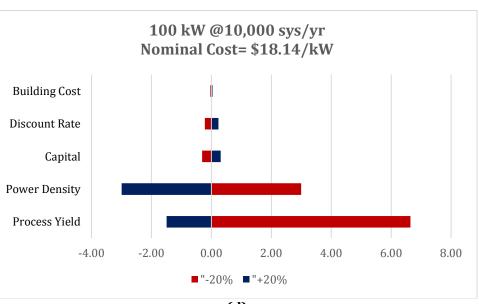
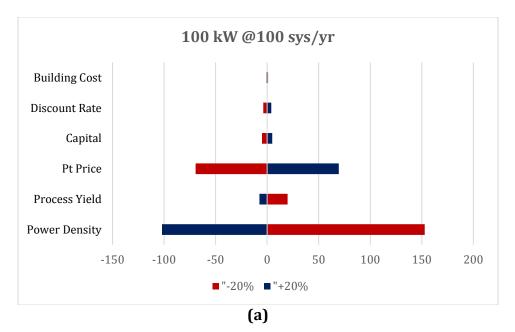
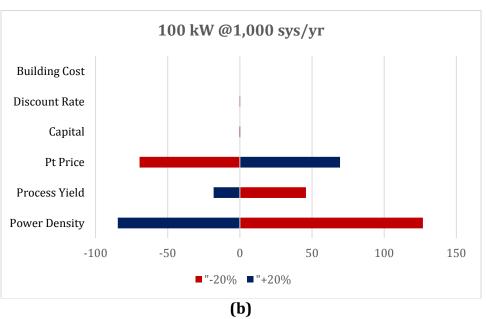




Figure B.1. Sensitivity analysis plots for PBI-membrane. Plots show equivalent area for 100 kW system expressed in (\$/kW) at different annual production rates: (a) 100 units/yr; (b) 1,000 units/yr; (c) 10,000 units /yr; and (d) 50,000 units/yr.

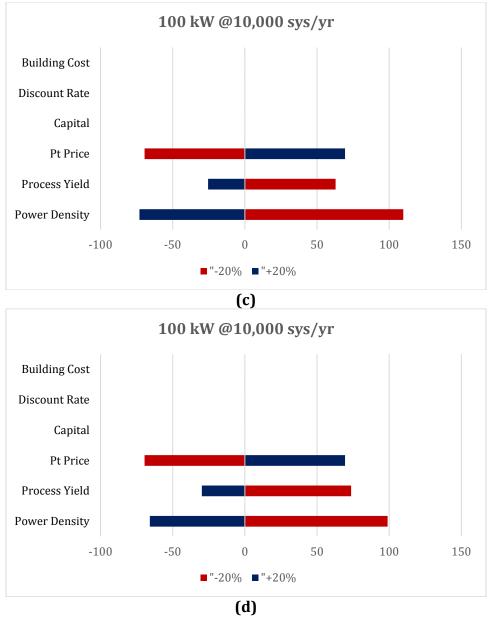
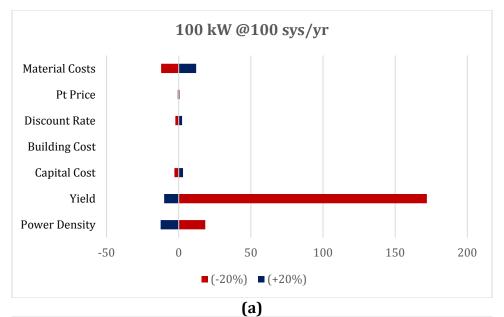
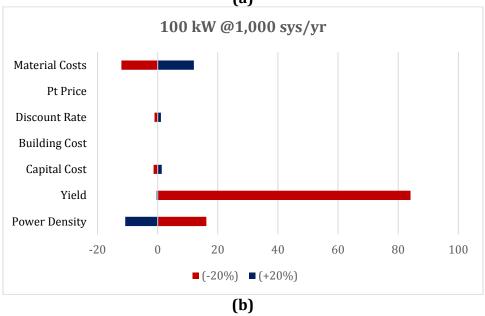




Figure B.2. Sensitivity analysis plots for GDE. Plots show equivalent area for 100 kW system expressed in (\$/kW) at different annual production rates: (a) 100 units/yr; (b) 1,000 units/yr; (c) 10,000 units /yr; and (d) 50,000 units/yr.

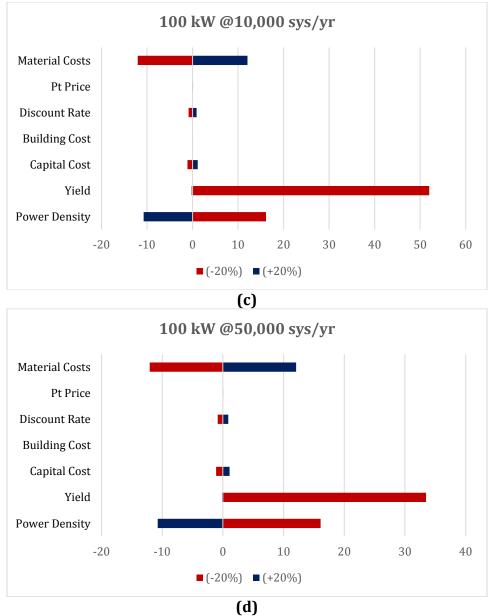
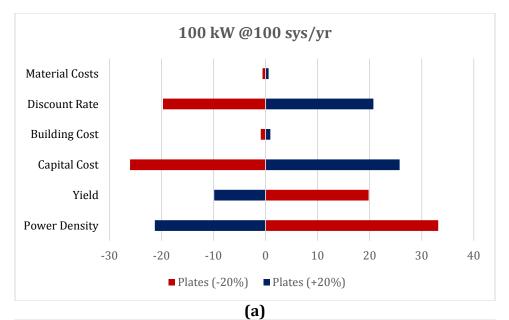
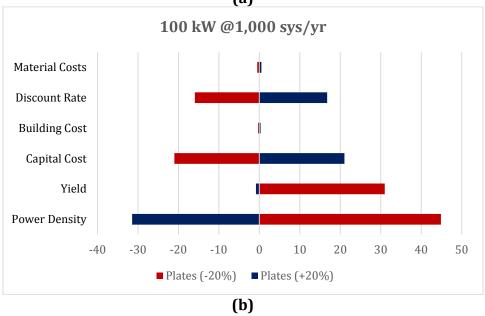
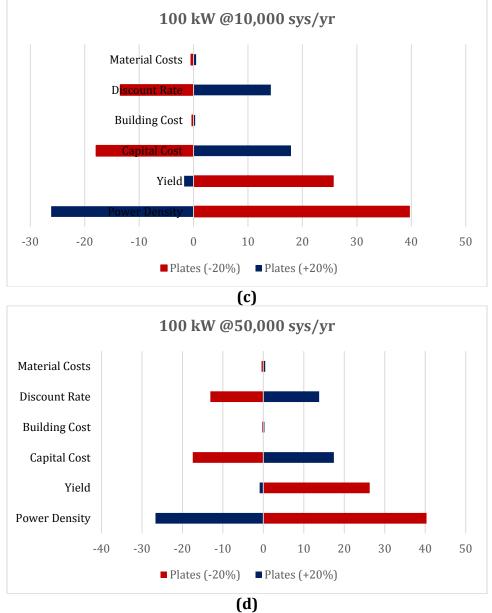
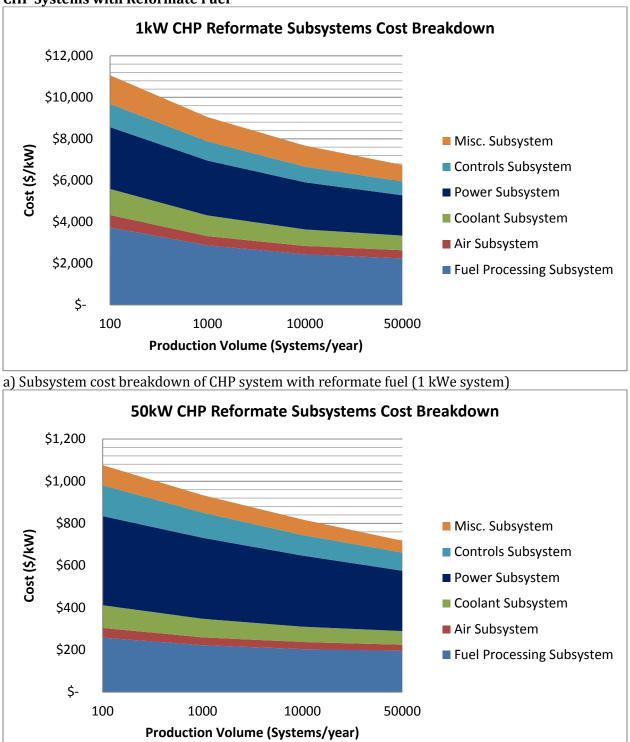
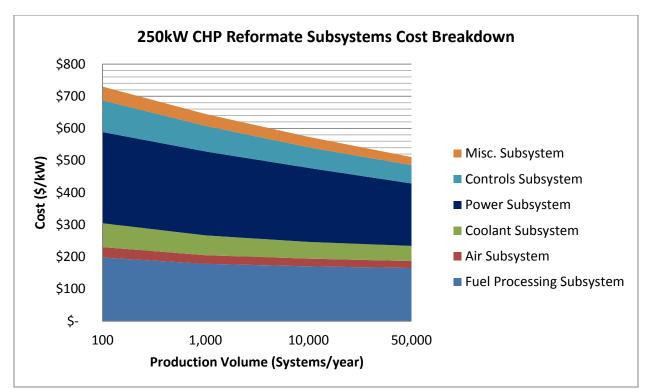
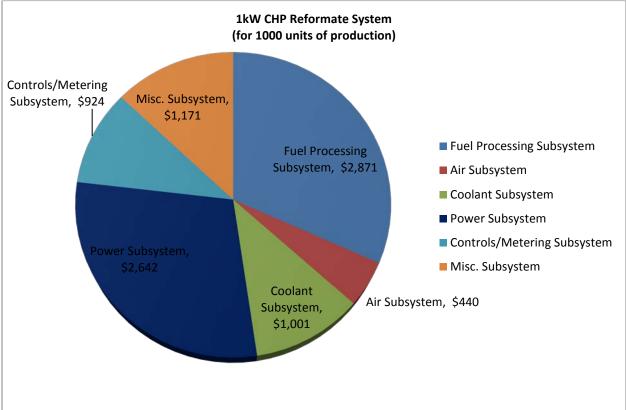




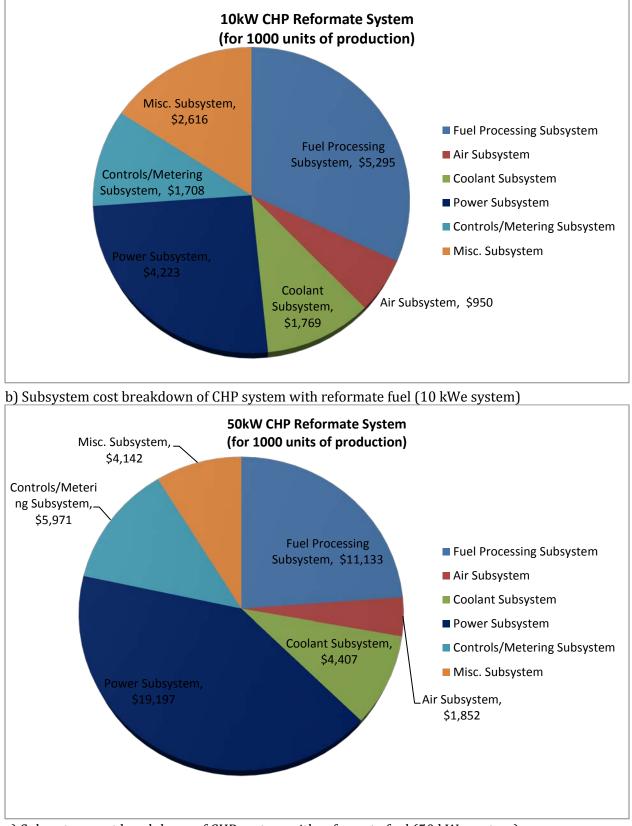
Figure B.3. Sensitivity analysis plots for MEA frame/seal. Plots show equivalent area for 100 kW system expressed in (\$/kW) at different annual production rates: (a) 100 units/yr; (b) 1,000 units/yr; (c) 10,000 units/yr; and (d) 50,000 units/yr.

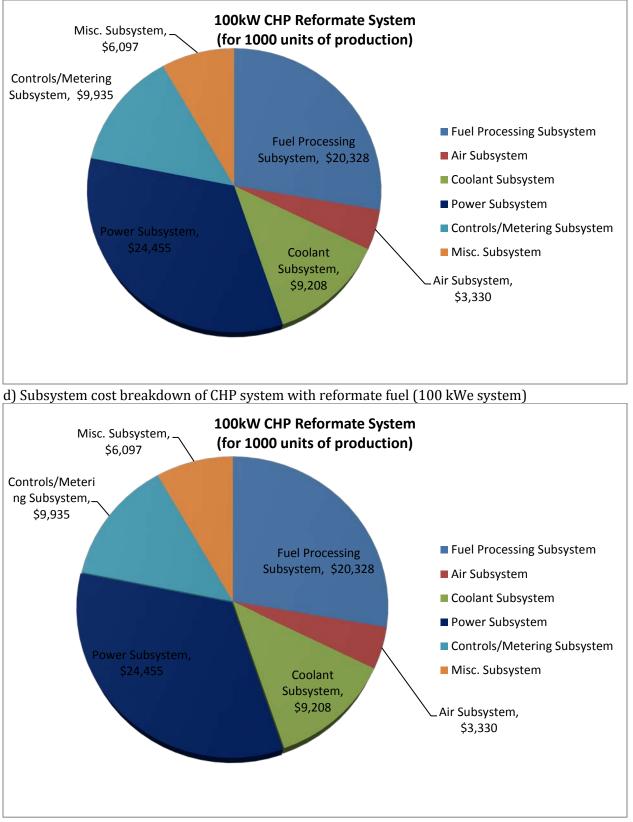

Figure B.4. Sensitivity analysis plots for plates. Plots show equivalent area for 100 kW system expressed in (\$/kW) at different annual production rates: (a) 100 units/yr; (b) 1,000 units/yr; (c) 10,000 units/yr; and (d) 50,000 units/yr.

Appendix C: Balance of Plant Cost and Total System Cost Results



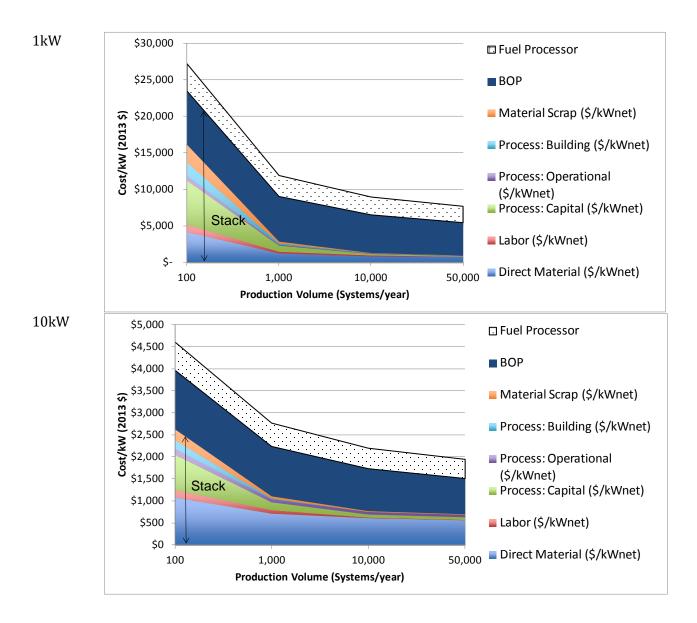

CHP Systems with Reformate Fuel

b) Subsystem cost breakdown of CHP system with reformate fuel (50 kWe system)


c) Subsystem cost breakdown of CHP system with reformate fuel (250 kWe system) Figure C.1. Subsystem cost breakdown of CHP system with reformate fuel for a) 1 kWe system; b) 50 kWe system; c) 250 kWe system

a) Subsystem cost breakdown of CHP system with reformate fuel (1 kWe system)

c) Subsystem cost breakdown of CHP system with reformate fuel (50 kWe system)

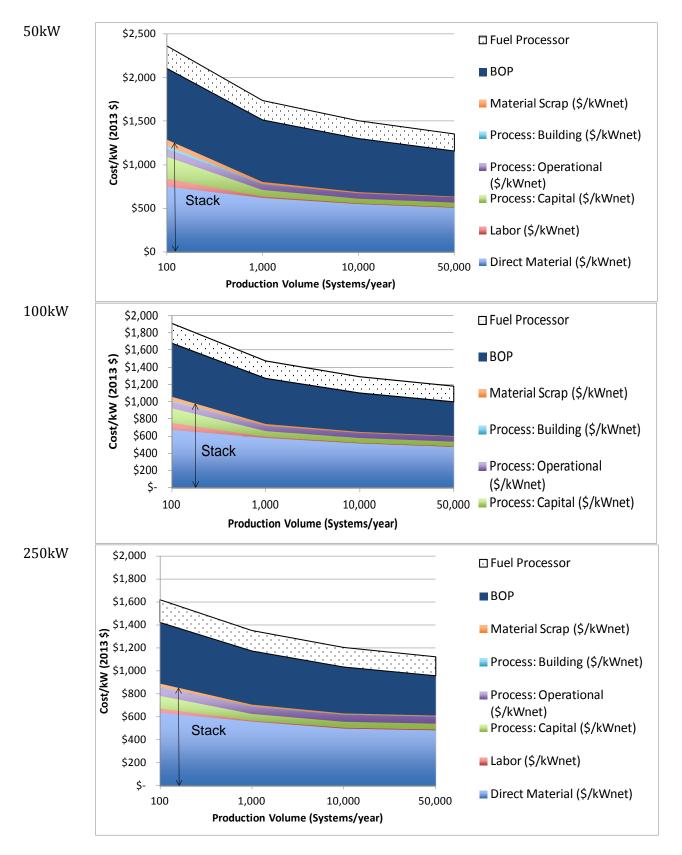


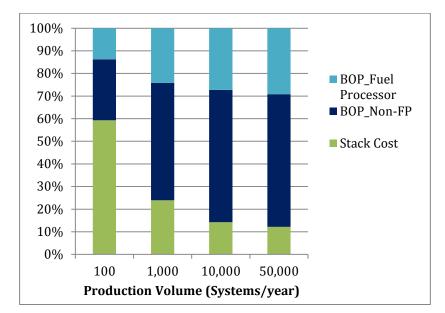
e) Subsystem cost breakdown of CHP system with reformate fuel (250 kWe system)

Figure C.2. Subsystem cost breakdown of CHP system with reformate fuel for: a) 1 kWe system; b)10 kWe system; c) 50 kWe system; d) 100 kWe system; e) 250 kWe system

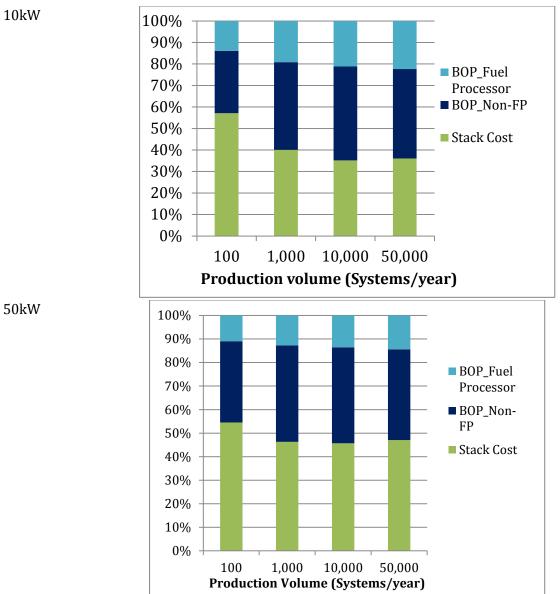
Subsystem/System Size	1kW	10kW	50kW	100kW	250kW
Fuel Processing	32%	32%	24%	28%	28%
Air	5%	6%	4%	5%	4%
Coolant	11%	11%	9%	13%	10%
Power	29%	25%	41%	33%	40%
Controls	10%	10%	13%	14%	12%
Miscellaneous	5%	7%	9%	12%	10%

Table C.1. Subsystem percentage cost breakdown for CHP system with reformate fuel (for 1000 systems/year)




Figure C.3. HT PEM fuel cell system cost breakdown for CHP system with reformate fuel.

Stack Size (kW)			1	
Production Volume (Units/yr)	100	1,000	10,000	50,000
Fuel Cell Stack Direct Material (\$/kWe _{net})	4,129.75	1,222.69	827.68	740.17
Fuel Cell Stack Labor (\$/kWe _{net})	1,015.05	237.34	132.97	23.78
Fuel Cell Stack Process: Capital (\$/kWe _{net})	6,045.39	806.24	166.24	80.32
Fuel Cell Stack Process: Operational (\$/kWe _{net})	640.67	132.93	73.71	64.33
Fuel Cell Stack Process: Building (\$/kWe _{net})	1,842.83	193.13	26.69	5.79
Fuel Cell Stack Material Scrap (\$/kWe _{net})	2,428.17	250.93	48.66	22.94
Fuel Cell Stack Cost	16,101.86	2,843.26	1,275.95	937.32
BOP_Non-Fuel Processor	7,333.02	6,177.58	5,236.77	4,502.75
BOP_Fuel Processor	3,730.32	2,871.44	2,437.60	2,241.36
Total (\$/kWnet)	27,165	11,892	8,950	7,681
Stack Size (kW)				
Production Volume (Units/yr)	100	1,000	10,000	50,000
Fuel Cell Stack Direct Material (/kWe _{net})	1,077.69	708.85	606.53	558.85
Fuel Cell Stack Labor (/kWe _{net})	166.25	82.28	13.12	8.97
Fuel Cell Stack Process: Capital (/kWe _{net})	806.24	172.57	66.65	55.71
Fuel Cell Stack Process: Operational (/kWe _{net})	134.17	74.59	64.10	63.21
Fuel Cell Stack Process: Building (/kWe _{net})	193.13	20.69	2.51	1.66
Fuel Cell Stack Material Scrap (/kWe _{net})	251.21	48.76	18.58	12.33
Fuel Cell Stack Cost	2,628.71	1,107.74	771.48	700.72
BOP_Non-Fuel Processor	1,336.15	1,126.70	958.42	806.50
BOP_Fuel Processor	638.40	529.50	464.12	434.51
Total (/kW _{net})	4,603	2,764	2,194	1,942
Stack Size (kW)			50	
Production Volume (Units/yr)	100	1,000	10,000	50,000


Fuel Cell Stack Direct Material (\$/kWe _{net})	749.74	618.37	547.70	505.39
Fuel Cell Stack Labor (\$/kWe _{net})	88.93	16.51	8.34	7.44
Fuel Cell Stack Process: Capital (\$/kWe _{net})	255.71	77.19	55.40	53.66
Fuel Cell Stack Process: Operational (\$/kWe _{net})	82.25	65.62	63.12	62.87
Fuel Cell Stack Process: Building (\$/kWe _{net})	41.81	4.19	1.50	1.25
Fuel Cell Stack Material Scrap (\$/kWe _{net})	71.96	22.92	12.31	7.26
Fuel Cell Stack Cost	1,290	805	688	638
BOP_Non-Fuel Processor	818	711	615	522
BOP_Fuel Processor	258	223	204	195
Total (\$/kW _{net})	2,367	1,739	1,507	1,356
Stack Size (kW)		1	.00	
Production Volume (Units/yr)	100	1,000	10,000	50,000
Fuel Cell Stack Direct Material (\$/kWe _{net})	675.75	578.07	514.17	474.74
Fuel Cell Stack Labor (\$/kWe _{net})	76.38	12.09	7.51	7.05
Fuel Cell Stack Process: Capital (\$/kWe _{net})	172.58	66.65	54.43	51.63
Fuel Cell Stack Process: Operational (\$/kWe _{net})	72.90	62.50	61.36	61.19
Fuel Cell Stack Process: Building (\$/kWe _{net})	13.22	3.04	1.29	1.16
Fuel Cell Stack Material Scrap (\$/kWe _{net})	48.05	18.17	9.87	5.29
Fuel Cell Stack Cost	1,058.87	740.52	648.64	601.06
BOP_Non-Fuel Processor	622.55	530.25	452.54	397.48
BOP_Fuel Processor	230.56	203.28	189.20	182.16
Total (\$/kW _{net})	1,912	1,474	1,290	1,181
Stack Size (kW)		2	250	
Production Volume (Units/yr)	100	1,000	10,000	50,000
Fuel Cell Stack Direct Material (\$/kWe _{net})	635.14	557.12	497.03	481.81
Fuel Cell Stack Labor (\$/kWe _{net})	35.55	8.52	7.21	6.98

Fuel Cell Stack Process: Capital (\$/kWe _{net})	113.21	60.57	53.53	52.20
Fuel Cell Stack Process: Operational (\$/kWe _{net})	68.48	62.70	62.06	62.09
Fuel Cell Stack Process: Building (\$/kWe _{net})	6.05	1.75	1.21	1.15
Fuel Cell Stack Material Scrap (\$/kWe _{net})	30.49	14.54	7.21	5.48
Fuel Cell Stack Cost	888.93	705.21	628.25	609.72
BOP_Non-Fuel Processor	531.99	466.11	402.88	345.23
BOP_Fuel Processor	198.00	178.64	170.72	165.44
Total (\$/kWnet)	1,619	1,350	1,202	1,120

Table C.2: Cost breakdown for HT PEM system with reformate fuel

1kW

50kW

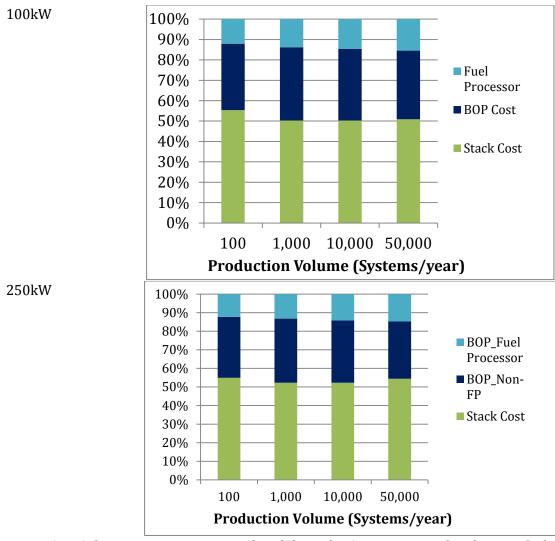
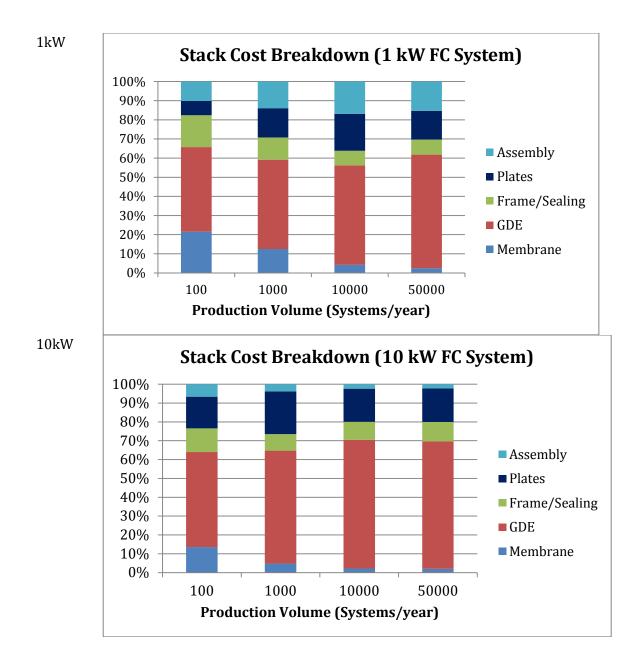
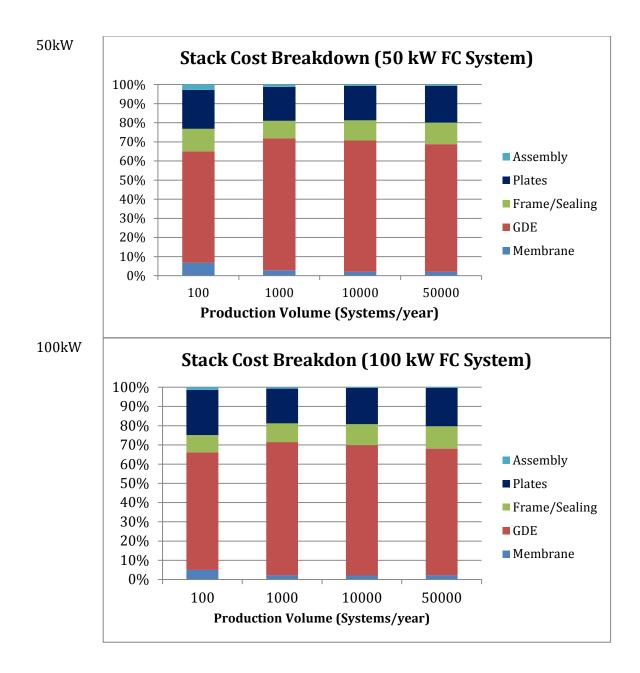




Figure C. 4: Subsystem percentage cost breakdown for CHP system with reformate fuel

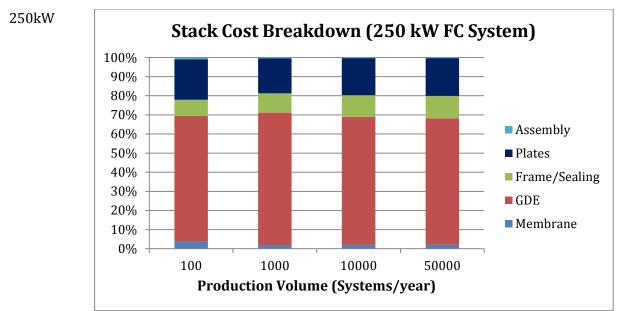
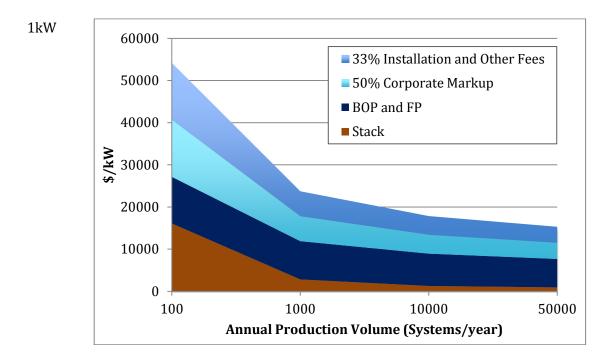
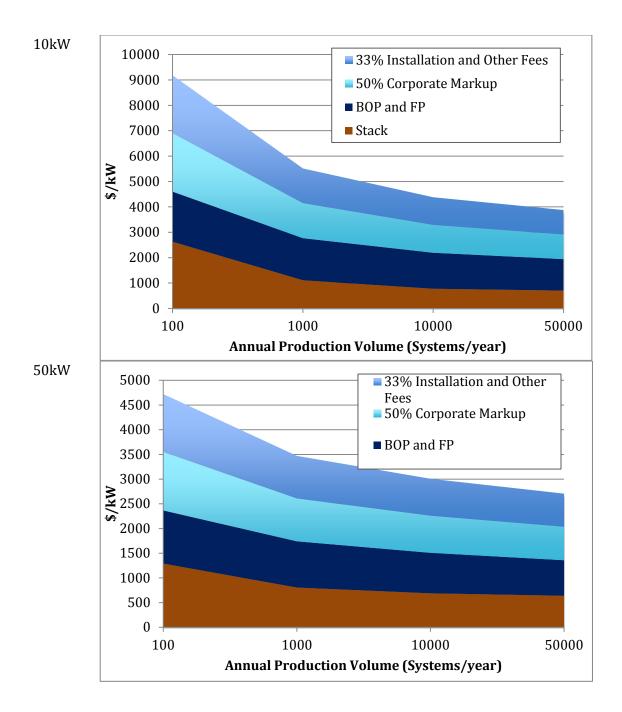




Figure C. 5: Stack cost percentage cost breakdown for CHP system with reformate fuel

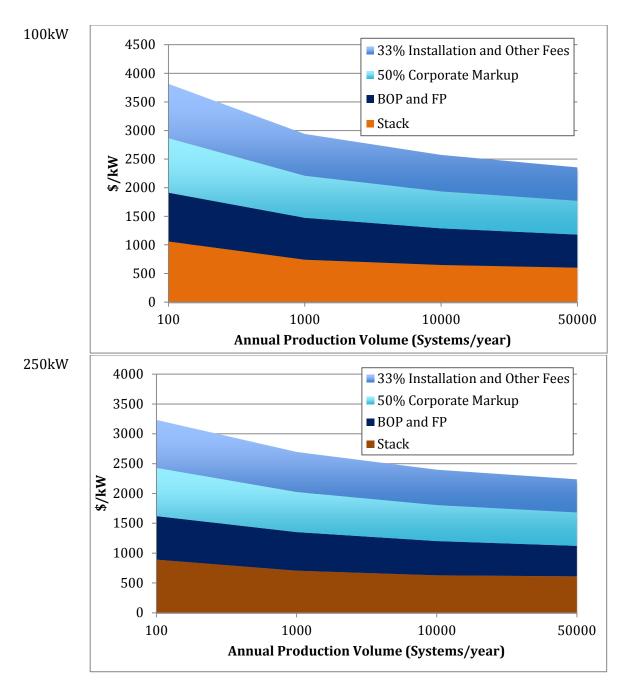


Figure C.6: Installed costs of the CHP HT PEMFC system

Appendix D: Total Cost of Ownership Modeling of CHP Fuel Cell Systems

Although LT PEM report contains all assumption of the total cost of ownership modeling and its results for small hotel and large hospital, we include here significant changes between LT PEM and HT PEM fuel cells. Some of the important differences between these two PEM technologies are: equipment cost, refurbishment and replacement cost, system efficiencies (electrical and thermal). Following section discusses the method of estimating O&M cost for HT PEM fuel cell system.

Estimation of Replacement Cost

Example below summarizes simple calculation method to estimate Operation and Maintenance (O&M) cost for 50 kW FC system. This example is a simple economic calculation method used to estimate O&M cost. Starting with initial cost for some major subsystems and their replacement frequencies, we converted all future values to present values (NPV) using 5% discount rate, then we converted these NPVs into equal annual payments as shown below.

Part	Replacement Frequency (Year)	Frequency Cost (\$)* (Year)		Annual Payment (\$)
Stack†	20,000 hr	\$37,240	\$90,602.63	(\$9,947.68)
Reformer	5	12,651	\$17,325.43	(\$1,902.24)
Compressor/blower	10	3,823	\$2,300.05	(\$252.53)
Water Management sub-system	10	3,655	\$2,198.98	(\$241.44)
Battery/startup system	5	510	\$698.44	(\$76.68)
	Total		\$113,125.53	(\$12,420.57)

* Cost based on DFMA results for 50kW systems.

*** All future values were converted to present values (2013\$) using 5% discount rate

[†] Stack is refurbished every 20,000 hours by conditioning some components like plates and putting them again in the stack

(refurbishment cost=50% of the original cost), and replaced completely every 40,000

‡ Assumed 96% availability of the system for scheduled stack replacement.

‡‡ End-of-life parts assumed to be sold at 2% of original value.

Table D.1. Replacement schedule with associated cost

Now for a full duty cycle, the maximum FC capacity equals to 24hr/day X 365day/yr X 50 kWX 0.96 (availability)= 420,480 kWh per year

- Displaced Electricity by FC for small hotel in Phoenix, AZ=382,253 kWh
- Displaced Electricity by FC for small hotel in Minneapolis, MN=345,368
- Displaced Electricity by FC for small hotel in Chicago, IL=345,791
- Displaced Electricity by FC for small hotel in New York City, NY=314,930
- Displaced Electricity by FC for small hotel in Houston, TX=362,313

Then if we estimate average displaced power by fuel cell to be 350,000 kWh, this will give us the following 0&M cost: 12,420/350k= 3.5¢ per kWh.

Use-phase Model and results

In this section we will discuss results of the use phase model with larger fuel cell sizes: 50kWe fuel cell system for small hotel and 1MW (4X250kWe) fuel cell system for hospital.

Parameter	Phoenix, AZ	Minneapolis, MN	Chicago, IL	NYC, NY	Houston, TX	Unit			
Building Type			mall Hotel						
FC system size			50			kW			
Capital costs of FC including installation cost		3,400							
Electricity price	Variable by time	Variable by time	Variable by time	Variable by time	Variable by time	\$/kWh			
Demand Charge	4.05	3.30	5.69	17.95	12.39 15.13 (June-Sep)	\$ * Peak kWh			
NG cost	0.0357	0.0258	0.0292	0.0332	0.0263	\$/kWh			
Scheduled maintenance cost ‡	1,000	1,000	1,000	1,000	1,000	\$/yr			
O&M cost	0.035	0.035	0.035	0.035	0.035	\$/kWh			
Days per year	365	365	365	365	365	day			
FC system availability‡‡	96%	96%	96%	96%	96%				
Lifetime of system	15	15	15	15	15	yr			
Interest rate	5%	5%	5%	5%	5%				

Table D.2 summarizes assumptions for 50kWe fuel cell system in small hotel.

‡ From CETEEM model (Lipman et al., 2004).

‡‡ In this analysis the CHP system was assumed to have a 96% availability factor and three outages during the year. One outage is assumed to be a planned maintenance outage and two are assumed to be unplanned forced outages. Table. D.2. Assumptions for cost and environmental impact model for 50 kW HT PEM fuel cell system used as a CHP system in small hotel.

For the hospital case, four 250kW FC systems are included to accommodate the total demand rather than a single 1000 kW system since a 250kW system was modeled in the current analysis (Table D.3). In the use-phase model for hospitals, a new FC system is triggered if the first one is not enough to supply required electrical load (i.e. total of electricity and cooling loads) and so on for the third and fourth FC system. However, all triggered system should run at 50% or more of their rated power capacity in order to have them operating at high efficiency. (Note: the power efficiency for each individual fuel cell will fall below 30% if it is operating at <10% of its rated power). If all four systems combined together cannot supply the required load at any given time, then this unmet demand will be purchased from the grid. Similar logic was also used for total heating demand and supply; i.e. if the FC system cannot provide all of the heat demand, the system will cover these heating loads using NG-fired boiler systems.

Parameter	Phoenix, AZ	Minneapolis, MN	Chicago , IL	NYC, NY	Houston, TX	San Diego, CA	Unit
Building Type		Н					
FC system size		250X4					
Capital costs of FC including installation cost			3,000				\$/kW

Electricity price	Variable	Variable by	Variable	Variable	Variable		\$/kWh
	by time	time	by time	by time	by time		
Demand Charge	4.05	8.98 12.86 (June- Sep)	5.86	17.95	12.39 15.13 (June- Sep)	19.96	\$* Peak kWh
NG cost	0.0357	0.0258	0.0292	0.0332	0.0263	0.0277	\$/kWh
Scheduled	3,000	3,000	3,000	3,000	3,000		\$/yr
maintenance cost ‡							
O&M cost	0.035	0.035	0.035	0.035	0.035		\$/kWh
Days per year	365	365	365	365	365		day
FC system	96%	96%	96%	96%	96%		
availability‡‡							
Lifetime of system	15	15	15	15	15		yr
Interest rate	5%	5%	5%	5%	5%		

From CETEEM model (Lipman et al., 2004). ## In this analysis the CHP system was assumed to have a 96% availability factor and three outages during the year. One outage is assumed to be a planned maintenance outage and two are assumed to be unplanned forced outages.

Table. D.3. Life cycle cost analysis assumptions for hospital case (1MW FC system).

Use phase results for small hotel and large hospital are shown in Tables D.4 and D.5, respectively.

Output	No Fuel Cell	Fuel Cell	No Fuel Cell	Fuel Cell	No Fuel Cell	Fuel Cell	No Fuel Cell	Fuel Cell	No Fuel Cell	Fuel Cell
FC System Utilization		82.30%		78.90%		79%		71.90%		82.70%
FC Heat Utilization WH+SH		13.00%		39.10%		33%		32.60%		10.80%
Total Electricity Demand (kWh/yr)	576	,668	419	,590	424	,147	369	9,661	497	,656
Total Space Heating Demand (kWh/yr)	23,	307	174	,743	135	,869	135	5,869		0
Total Water Heating Demand (kWh/yr)	76,	954	127	,112	118	,971	116	5,075	83,	.071
Annual Generated Power by FC (kWh)		382,253		345,368		345,791		314,930		362,313
Annual Generated Heat by FC (kWh)		671,725		595,698		596,811		539,856		632,809
					ies space	and water	[.] heating			
Capital Cost	0	1.64E+04	0	1.64E+04	0	1.64E+04	0	1.64E+04	0	1.64E+04
O&M Cost	0	13,379	0	1.21E+04	0	1.21E+04	0	1.10E+04	0	1.27E+04
Scheduled Maintenance	0	1000	0	1000	0	1000	0	1000	0	1000
Fuel Cost- FCS only	0	4.70E+04	0	3.04E+04	0	3.45E+04	0	3.55E+04	0	3.28E+04
Residual Fuel	3574.3	0	7778.815	18.270415	7448.98	0.294638	8351.96	0.284427	2184.77	0
Electrcity Cost	4.73E+04	1.54E+04	4.54E+04			4888.965	8797.94	990.2948		3727.641
, Dmenad Charge	5444.82	3635.28	3421.77	1936.77	6020.59	3460.089		8881.66		9422.297
Fixed Monthly			-							
, Charge	149.64	149.64	131.16	131.16	347.88	347.88	1240.56	1240.56	295.44	295.44
Cost (\$/yr) FC supplies both space heating and Hot water	56,473	96,941	56,706	68,586	45,922	72,665	35,350	74,979	33,397	76,267
GHG (ton CO ₂ /yr) FC supplies both space heating and Hot water	298	338.483	404.695	263.695	338.787	237.787	147.998	151.998	277.300	299.300
					upplies h	ot water o	only			
Capital Cost	0	1.64E+04	0	1.64E+04	0	1.64E+04	0	1.64E+04		1.64E+04
O&M Cost	0	13,379	0	1.21E+04	0	1.21E+04	0	1.10E+04	0	1.27E+04
Scheduled										
Maintenance	0	1000	0	1000	0	1000	0	1000		1000
Fuel Cost- FCS only	0	4.70E+04	0	3.04E+04	0	3.45E+04	0	3.55E+04		3.28E+04
Residual Fuel	3574.3	830.9055	7778.815		7448.98	3971.451	8351.96	4504.0579		0
Electrcity Cost	4.73E+04	1.54E+04	4.54E+04		3.21E+04	4888.965	8797.94	990.2948		3727.641
Dmenad Charge	5444.82	3635.28	3421.77	1936.77	6020.59	3460.089	1.70E+04	8881.66	1.55E+04	9422.297
Fixed Monthly Charge	149.64	149.64	131.16	131.16	347.88	347.88	1240.56	1240.56	295.44	295.44
Cost (\$/yr) FC supplies Hot water only	56,473	97,772	56,706	73,071	45,922	76,636	35,350	79,483	33,397	76,267
GHG (ton CO ₂ /yr) FC supplies Hot water only	298	343.983	404.695	308.795	338.787	276.687	147.998	170.598	277.300	303.400

Table D.4. Output results from use-phase model for small (50kW FC system).

		nix, AZ		oolis, MN		ago, IL		C, NY		on, TX		ego, CA
Output	No Fuel	Fuel Cell	No Fuel	Fuel Cell	No Fuel	Fuel Cell	No Fuel	Fuel Cell	No Fuel	Fuel Cell	No Fuel	Fuel Cell
Output	Cell	ruci ech	Cell	i dei een	Cell	i dei een	Cell	ruci celi	Cell	i uci celi	Cell	i dei celi
FC System Utilization		96.50%		79.70%		85%		83.10%		98.11%		24.70%
FC Heat Utilization		18.00%		24.50%		23%		27.40%		18.80%		3.84%
WH+SH		10.0070		24.50%		23/0		27.4070		10.0070		5.0470
Total Electricity	9	140	7 3	331	7	852	7	624	9 1	533	2 1	.66
Demand (MWh/yr)	5,	140	7,5	551	,,	552	,,	024	5,	555	2,1	.00
Total Space Heating	2	689	3 (533	3.	467	1	102	2.5	812	53	29
Demand (MWh/yr)	2,	005	5,0	555	5,	+07	-,	102	2,0	512		
Total Water Heating	1	40	2	30	2	15		210	1	51	7	6
Demand (MWh/yr)	-		2	50	2	15		.10	1.	51	,	
Annual Generated				C 702		7 1 1 7		C 080		0.051		2 0 0 0
Power by FC (MWh)		8,112		6,703		7,117		6,989		8,251		2,080
Annual Generated												
Heat by FC (MWh)		1.42E+07		1.23E+07		1.29E+07		12,804,450		1.42E+07		5.27E+06
					FC suppl	ies space a	and water	heating				
Capital Cost	0	3.61E+05	0	3.61E+05	0		0	3.61E+05	0	3.61E+05	0	3.61E+05
O&M Cost	0	2.84E+05	0	2.35E+05	0	2.49E+05	0	2.45E+05	0			7.28E+04
Scheduled		21012:00		2.002.00		21152-05		21102.00		2.052.05		71202.01
Maintenance	0	3.00E+03	0	3000	0	3000	0	3000	0	3000	0	3000
Fuel Cost- FCS only	0	972,278	0	575,782	0	694,942	0	772,848	0	731,395	0	
Residual Fuel Cost	1.01E+05	0.00E+00	9.95E+04	394.81358	-	46.90441	-		7.79E+04	,	1.68E+04	
Electrcity Cost	6.29E+05	4.91E+04	4.49E+05		5.94E+05	3.34E+04		8176.4186		2.91E+04		0
Dmenad Charge	6.38E+04	2.53E+04	1.48E+05		8.75E+04	3.15E+04			2.16E+05	8.71E+04		1.50E+04
Fixed Monthly	0.302104	2.552.04	1.402.05	4.052.04	0.752.04	5.152.04	2.012.03	0.542.04	2.102.05	0.712.04	0.752.04	1.502.04
Charge	6366.96	6366.96	340.56	340.56	516	516	1240.56	1240.56	295.44	295.44	2794.44	2794.44
Cost (\$/yr)	0300.90	0300.90	540.50	540.50	510	510	1240.30	1240.30	233.44	233.44	2754.44	2754.44
FC supplies both												
	800,020	1,701,225	697,198	1,245,051	789,276	1,373,772	586,142	1,482,282	589,224	1,500,913	273,381	639,972
space heating and												
Hot water												
GHG (ton CO ₂ /yr) FC	4.050	F (00	6.015	4.062	6 00 4	4 24 0	2 002	2 4 4 4	5 5 6 0	5 000	1 1 6 2	4 274
supplies space and	4,956	5,680	6,815	4,963	6,084	4,319	2,892	3,141	5,560	5,996	1,162	1,371
water heating												
						upplies ho						
Capital Cost	0	3.61E+05	0	3.61E+05	0		0	3.61E+05	0			3.61E+05
O&M Cost	0	2.84E+05	0	2.35E+05	0	2.49E+05	0	2.45E+05	0	2.89E+05	0	7.28E+04
Scheduled												
Maintenance	0	3.00E+03	0	3000	0	3000	0	3000	0	3000	0	3000
Fuel Cost- FCS only	0	972,278	0	575,782	0	694,942	0	772,848	0	731,395	0	185,096
Residual Fuel Cost	1.01E+05	9.59E+04	9.95E+04	93617.215	1.08E+05	101331.9	1.43E+05	135979.72	7.79E+04		1.68E+04	14664.8
Electrcity Cost	6.29E+05	4.91E+04	4.49E+05	2.14E+04	5.94E+05		1.81E+05	8176.4186	2.96E+05	2.91E+04	1.86E+05	0
Dmenad Charge	6.38E+04	2.53E+04	1.48E+05	4.83E+04	8.75E+04	3.15E+04	2.61E+05	8.94E+04	2.16E+05	8.71E+04	6.75E+04	1.50E+04
Fixed Monthly												
Charge	6366.96	6366.96	340.56	340.56	516	516	1240.56	1240.56	295.44	295.44	2794.44	2794.44
Cost (\$/yr)												
FC supplies both	800.020	1 707 007	607 100	1 220 272	700 270	1 475 057	EQC 142	1 616 530	500 334	1 574 957	272 204	654 627
space heating and	800,020	1,797,087	697,198	1,338,273	789,276	1,475,057	586,142	1,616,529	589,224	1,574,857	273,381	654,637
Hot water												
GHG (ton CO ₂ /yr) FC												
supplies Hot water	4,956	6,265	6,815	5,551	6,084	5,447	2,892	3,983	5,560	6,556	1,162	1,489
only	.,= = 0	2,200	-,	-,	-,	-,,	-,	2,2 30	,	2,230	-,	-,
,									I			I

Table D.5. Output results from use-phase model for hospital (1MW FC system).

Tables D.6 and D.7 summarize LCIA results for small hotel case using 50kWe fuel cell system in which waste heat is utilized for water heating only (Table D.6) and space and water heatings (Table D.7). Similarly Tables D.8 and D.9 summarizes LCIA results for 1MW fuel cell system used in the hospital case. Table D.8 summarizes LCIA results when waste heat is used for water heating only,

while Table D.9 summarizes LCIA results when fuel cell system is used for space and water heatings.

Output	Phoenix	Minneapolis	Chicago	New York City	Houston
Annual Generated Power by FC (kWh)	382,253	345,368	345,791	314,930	362,313
Annual Generated Heat by FC (kWh)	671,725	595,698	596,811	539,856	632,809
Avoided GHG [tCO2e/y]	-45.5	95.9	62.1	-22.6	-26.1
Avoided NOx [tNOx/y]	0.137	0.413	0.363	0.123	0.130
Avoided SOx [tSOx/y]	0.086	0.786	1.232	0.202	0.151
Avoided PM10 [t/y]	0.0015	0.0012	0.0014	0.0015	0.00071
Avoided PM2.5 [t/y]	0.00045	0.00022	0.00025	0.00039	0.0000
GHG credit at \$44/ton CO ₂ (\$/kWhe)	-0.0052	0.012	0.008	-0.003	-0.0032
Health, Environmental Savings (\$/kWhe)	0.0013	0.018	0.027	0.007	0.0018

Table D.6. LCIA results for 50kWe fuel cell system used in the small hotel. Waste heat is utilized for water heating application only.

Table D.7. LCIA results for 50kWe fuel cell system used in the small hotel. Waste heat is utilized for space and water heating.

Output	Phoenix	Minneapolis	Chicago	New York City	Houston
Annual Generated Power by FC (kWh)	382,253	345,368	345,791	314,930	362,313
Annual Generated Heat by FC (kWh)	671,725	595,698	596,811	539,856	632,809
Avoided GHG [tCO2e/y]	-40	141	101	-4	-22
Avoided NOx [tNOx/y]	0.142	0.464	0.406	0.137	0.133
Avoided SOx [tSOx/y]	0.092	0.865	1.339	0.236	0.152
Avoided PM10 [t/y]	0.0019	0.0028	0.0029	0.0023	0.00088
Avoided PM2.5 [t/y]	0.00059	0.00053	0.00053	0.00084	0.0000
GHG credit at \$44/ton CO ₂ (\$/kWhe)	-0.0046	0.018	0.013	-0.001	-0.0026
Health, Environmental Savings (\$/kWhe)	0.0015	0.020	0.030	0.010	0.0019

Table D.8. LCIA results for 1MWe fuel cell system used in the hospital. Waste heat is utilized for water heating application only.

Output	Phoenix	Minneapolis	Chicago	New York City	Houston	San Diego	
Annual Generated Power by FC (MWh)	8,112	6,703	7,117	6,989	8,251	2080	
Annual Generated Heat by FC (MWh)	14,154	12,345	12,913	12,804	14,177	5272	
Avoided GHG [tCO2e/y]	-1309	1264	637	-1091	-996	-327	
Avoided NOx [tNOx/y]	2.62	7.34	6.77	2.27	2.67	0.68	
Avoided SOx [tSOx/y]	1.47	14.16	23.60	3.89	3.30	0.38	
Avoided PM10 [t/y]	0.0022	0.0033	0.0020	0.0033	0.0021	0.00063	
Avoided PM2.5 [t/y]	0.00023	0.00061	0.00010	0.00088	0.00011	0.00006	
GHG credit at \$44/ton CO ₂ (\$/kWhe)	-0.0071	0.0083	0.0039	-0.0069	-0.005	-0.0069	
Health, Environmental Savings (\$/kWhe)	0.0009	0.0158	0.0251	0.0044	0.002	0.0014	

Output	Phoenix	Minneapolis	Chicago	New York City	Houston	San Diego
Annual Generated Power by FC (MWh)	8,112	6,703	7,117	6,989	8,251	2080
Annual Generated Heat by FC (MWh)	14,154	12,345	12,913	12,804	14,177	5272
Avoided GHG [tCO2e/y]	-724	1852	1765	-249	-436	-209
Avoided NOx [tNOx/y]	3.11	7.85	8.01	2.98	3.14	0.77
Avoided SOx [tSOx/y]	1.63	14.50	26.65	4.74	3.38	0.42
Avoided PM10 [t/y]	0.0445	0.0550	0.0340	0.0678	0.0407	0.00502
Avoided PM2.5 [t/y]	0.00469	0.01028	0.00176	0.01811	0.00210	0.00050
GHG credit at \$44/ton CO ₂ (\$/kWhe)	-0.0039	0.0122	0.0109	-0.0016	-0.0023	-0.0044
Health, Environmental Savings (\$/kWhe)	0.0013	0.0179	0.0286	0.0101	0.002	0.0020

Table D.9. LCIA results for 1MWe fuel cell system used in the hospital. Waste heat is utilized for space and water heating.

Total Cost of Ownership Model Results

Tables D.10 and D.11 show TCO results for 50kW FC system in small hotel case and 1MW FC system in large hospital case, respectively.

A water fall plot was made for the 50kW fuel cell system used in small hotel in Chicago, IL and shows that space and water heating can offset 13.3% of the levelized cost of electricity (Figure D.1). GHG credits provide 10.4% savings at \$44 per ton of CO_2 -eq, and health and environmental savings provide 11.6% savings. Total savings from heating and externalities is about 35% for the case of CHP with offset water heating and space heating.

Outrust	Phoenix, AZ		Minneapolis, MN		Chicago, IL		NYC, NY		Houston, TX	
Output	No FCS	Fuel Cell	No FCS	Fuel Cell	No FCS	Fuel Cell	No FCS	Fuel Cell	No FCS	Fuel Cell
FC System Utilization		82.3%		78.9%		79.0%		71.9%		82.7%
Total Electricity Demand			419,590	410 500	424 147	424 147	200.001	369,661	407.050	407.050
(kWh/yr)	576,668	576,668	419,590	419,590	424,147	424,147	369,661	369,661	497,656	497,656
Total Space Heating Demand	22	207	174,743		135,869		125.000		0	
(kWh/yr)	23,307		174,745		155,809		135,869		0	
Total Water Heating Demand	76,954		127,112		118,971		116,075		83,071	
(kWh/yr)	70	,934	127,112		110	,971	110,075		65,	071
Annual Generated Power by		382,253		345,368		345,791		314,930		362,313
FC (kWh)		502,255		545,500		545,751		514,550		502,515
FC fraction of Electricity										
Demand		66%		82%		82%		85%		73%
Annual Generated Heat by FC		671,725		595,698		596,811		539,856		632,809
(kWh)		0, 1,, 25		333,030		330,011		333,030		032,005
Capital Cost (\$/yr)		16,400		16,400		16,400		16,400		16,400
O&M Cost (\$/yr)		13,379		12,100		12,100		11,000		12,700
Scheduled Maintenance						1,000		1,000		1,000
(\$/yr)		1,000		1,000						
Fuel Cost for Fuel Cell (\$/yr)		47,000		30,400		34,500		35,500		32,800
Fuel Cost for Conv. Heating	3574	0	7779	18	7449	0	8352	0	2185	0
(\$/yr)		-				-		-		-
Purchased Electricity Energy										
Cost (\$/yr)	47305	15360	45374	6679	32104	4889	8798	9.90E+02	15427	3728
Demand Charge (\$/yr)	5445	3635	3422	1937	6021	3460	16959	8882	15490	9422
Fixed Charge, Electricity										
(\$/yr)	150	150	131	131	348	348	1241	1241	295	295
Total Electricity Cost (\$/yr)	5.29E+04	96924	4.89E+04	68647	3.85E+04	72697	2.70E+04	75013	3.12E+04	7.63E+04
Total Cost of Electricity (\$/kWh)	0.092	0.168	0.117	0.164	0.091	0.171	0.073	0.203	0.063	0.153
Purchased Electricity Cost (\$/kWh)	0.092	0.098	0.117	0.118	0.091	0.111	0.073	0.203	0.063	0.099
LCOE of FC power (\$/kWh)		0.203		0.173		0.185		0.203		0.174
Fuel savings from		3574		7761		7449		0252		2185
conventional heating (\$/yr)		5574		//01		7449		8352		2165
Fuel savings per kWh(\$/kWh)		0.009		0.022		0.022		0.027		0.006
LCOE of FC power with fuel										
savings (\$/kWh)		0.194		0.151		0.164		0.176		0.168
GHG credit at \$44/ton CO ₂										
(\$/kWh)		-0.0046		0.0180		0.0129		-0.0006		-0.0026
Health, Environmental			1							
Savings (\$/kWh)		0.0015		0.0204		0.0301		0.0104		0.0019
LCOE with TCO Savings for			1							
Fuel Cell Power (\$/kWh)		0.197		0.113		0.121		0.167		0.168
LCOE with TCO Savings for FC										
and Purchased Power,		0.164		0.114		0.119		0.172		0.150
(\$/kWh)						-				

Table D.10. TCO results for 50kW kW FC system used in small hotel (water and space heating)

	Phoenix, AZ		Minneapolis, MN		Chicago, IL		NYC. NY		Houston, TX		San Diego, CA	
Output	No FCS	Fuel Cell	No FCS	Fuel Cell	No FCS	Fuel Cell	No FCS	Fuel Cell	No FCS	Fuel Cell	No FCS	Fuel Cell
FC System Utilization		96.5%		79.7%		84.6%		83.1%		98.1%		0.247
Total Electricity Demand												
, (MWh/yr)	9,140	9,140	7,331	7,331	7,852	7,852	7,624	7,624	9,533	9,533	2166.4	2166.4
Total Space Heating Demand		<u></u>										
(MWh/yr)	2,689		3,633		3,467		4,102		2812		528.8	
Total Water Heating Demand		140	220		215		210				75.5	
(MWh/yr)	140		230		215		210		151		75.5	
Annual Generated Power by		0 112		6 702		7 1 1 7		C 090		0.051		2000
FC (MWh)		8,112		6,703		7,117		6,989		8,251		2080
FC fraction of Electricity		89%		91%		91%		92%		87%		96%
Demand		69%		91%		91%		92%		0/70		90%
Annual Generated Heat by FC		14,200		12,300		12,900		12,804		14,200		5270
(MWh)		14,200		12,300		12,900		12,804		14,200		3270
Capital Cost (\$/yr)		361,000		361,000		361,000		361,000		361,000		361000
O&M Cost (\$/yr)		284,000		235,000		249,000		245,000		289,000		72800
Scheduled Maintenance		3,000		3,000		3,000		3,000		3,000		3000
(\$/yr)						-						
Fuel Cost for Fuel Cell (\$/yr)		972,278		575,782		694,942		772,848		731,395		185096
Fuel Cost for Conv. Heating	101000	0	99500	395	108000	47	143000	1,733	77900	0	16800	0
(\$/yr)	101000	0	55500	333	100000	77	143000	1,755	// 500	0	10000	Ŭ
Purchased Electricity Energy	629000	49,100	449000	21,400	594000	33,400	181000	8,176	296000	29.100	186000	0
Cost (\$/yr)	025000	43,100	445000	21,400	554000		101000	0,170		25,100	100000	Ŭ
Demand Charge (\$/yr)	63800	25,300	148000	48,300	87500	31,500	261000	89,400	216000	87,100	67500	15000
Fixed Charge, Electricity	6367	6367	341	341	516	516	1241	1241	295	295	2794	2794
(\$/yr)			-	-							-	_
Total Electricity Cost (\$/yr)	699167	1701045	597341	1244823	682016	1373358	443241	1480665	512295	1500890	256294	639690
Total Cost of Electricity	0.076	0.186	0.081	0.170	0.087	0.175	0.058	0.194	0.054	0.157	0.118	0.295
(\$/kWh)												
Purchased Electricity Cost	0.076	0.079	0.081	0.112	0.087	0.089	0.058	0.156	0.054	0.091	0.118	0.205
(\$/kWh)												
LCOE of FC power (\$/kWh)		0.200		0.175		0.184		0.198		0.168		0.299
Fuel savings from		101000		99105		107953		141267		77900		16800
conventional heating (\$/yr)												
Fuel savings per kWh (\$/kWh)		0.0125		0.0148		0.0152		0.0202		0.0094		0.0081
LCOE of FC power with fuel												
savings (\$/kWh)		0.187		0.160		0.169		0.177		0.158		0.291
GHG credit at \$44/ton CO ₂												
(\$/kWh)		-0.0039		0.0122		0.0109		-0.0016		-0.0023		-0.0044
(\$/KWN) Health, Environmental												
Health, Environmental Savings (\$/kWh)		0.0013		0.0179		0.0286		0.0101		0.0022		0.0020
LCOE with TCO Savings for												
Fuel Cell Power (\$/kWh)		0.190		0.130		0.129		0.169		0.158		0.293
LCOE with TCO Savings for FC		0 1 7 7		0.420		0.425		0.466		0.140		0.200
and Purchased Power,		0.177		0.129		0.125		0.168		0.149		0.290
(\$/kWh)												

Table D.11. TCO results for 1MW kW FC system used in small hotel (water and space heating)

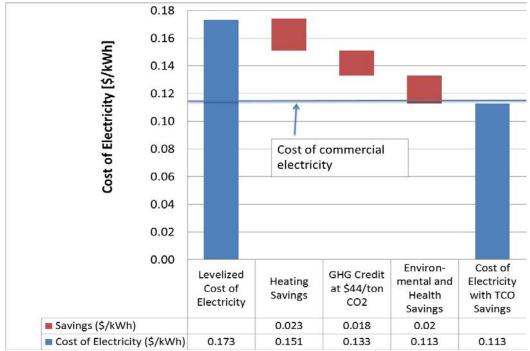


Figure D.1. Levelized and total cost of electricity for a 50kW small hotel in Chicago, IL.