Innovative Concepts

Resonance-Stabilized Anion Exchange Polymer Electrolytes

Yu Seung Kim

<u>yskim@lanl.gov</u>

Los Alamos National Laboratory

U N C L A S S I F I E D

Project Objectives

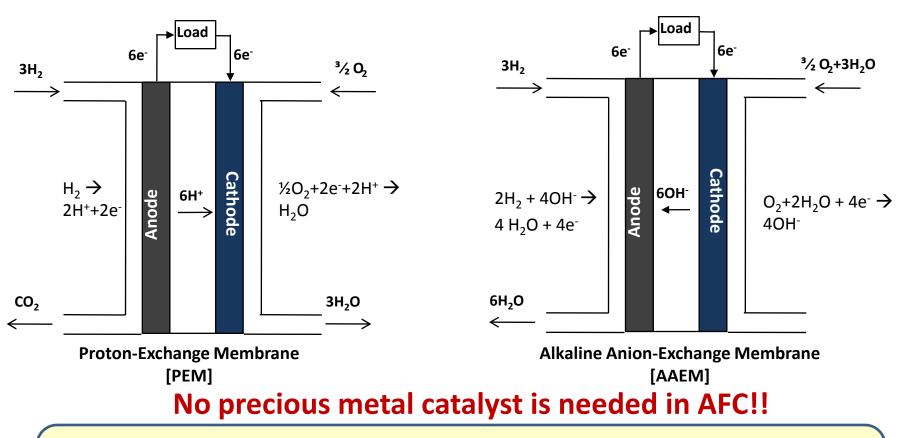
- Technical Barriers: Fuel cell commercialization is a cost issue. Pt is the primary driver for cost.
- Technical Cost Target: \$50/kW for fuel cell system.
- **Objective**: Reduce fuel cell cost by developing alkaline fuel cell system*.

2005 Key Assumptions Fuel Cell System Cost-80 kW Direct H, (108 \$/kW1, \$8,640) Power mW/cm² 600 density Cell voltage V 0.65LME Pt @ BOP Net power kW_ 80 \$900/troz 37% 38% Gross kW_ 90 power Production units/yr 500.000 volume 29 (900) Pt cost \$/g (\$/troz) Pt loading mg/cm² 0.75 Pt Catalyst Stack without Pt Conversion Stack Quality Control (QC) and 17% 8% conditioning not included kW of net power

Approximately 46% of the 2005 high volume cost comes from Pt

commodity cost and will not be subject to economies of scale.

Economies of Scale Impact of Commodity Materials


Average Pt cost is over S 1,100/ounce last 6 month

However, with time performance improvements will lower the grams Pt/kW_{net} over time.

11 D

PEMFC vs. AFC

"Nitrogen-containing carbon nanotubes can act as a metal-free electrode with a much better electro-catalytic activity..... than platinum for oxygen reduction in alkaline fuel cells" From Liming Dai et al. Science, 323, 760, Feb. 2009.

See other refs. 1) Lu et al. PNAS, 105, 52, 20611 (2008), 2) Lefevre et al. Science, 324, 71 (2009)

Technical Barriers for Alkaline Fuel Cells

ISSUES	Technical Barriers	Current Status	Technical Target
Stability	Fast degradation of AEM at high PH conditions	1M KOH 30 days [1]	> 500 h at 80°C in 1 M KOH solution
Conductivity	Significantly low due to low mobility of OH ⁻ , carbonate formation etc.	27 mS/cm (20°C) [1] 34 mS/cm (50°C) [2]	> 50 mS/cm at 80°C
Electrode Processing	Poor solubility of AEM and lack of understand electrode structure	196 mW/cm ² H ₂ /O ₂ 80°C [1] 130 mW/cm ² H ₂ /O ₂ , 50°C [3] 94 mW/cm ² , H ₂ /O ₂ 50°C [2]	> 200 mW/cm ² H ₂ /air at 80°C.

- 1. Y. Yan et al., Angewandte Chem. **121**, 6621-6624, (2009).
- 2. Varcoe et al., Chem. Mater. 19, 2686-2693, (2007).
- 3. Varcoe et al., *Electrochem. Comm.* **8**, 839-843, (2006).

Approach – Guanidine Base AEM


Advantage

- High stability due to high basicity
- High conductivity due to resonance structure
- Excellent processibility due to solubility
- Commercially available and cheap material (~ \$300/kg, Aldrich)

Disadvantage

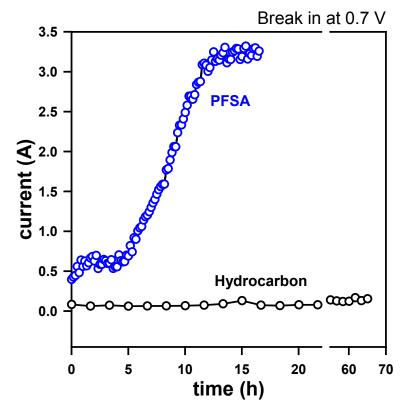
 Polymer degradation due to high cation basicity

Guanidine Base AEM

- 1: Triethylamine: H₂O (1:1 v/v)
- 2: Tetramethylguanidine: H_2O (1:1 v/v)
- 3:1 M NaOH

Approach – Perfluorinated Electrode

Learning from PEMFC

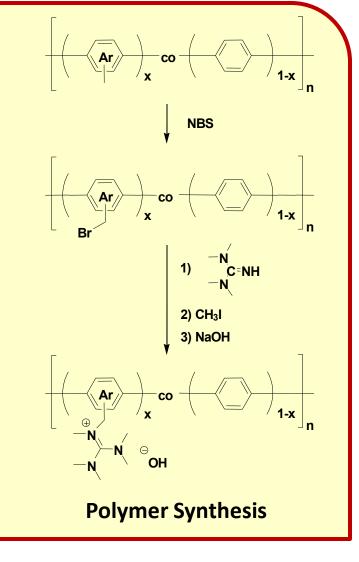

- Electrode using hydrocarbon lonomers were never broken!!!
- Perfluorinated membrane has high H₂ crossover

Ideal Combination

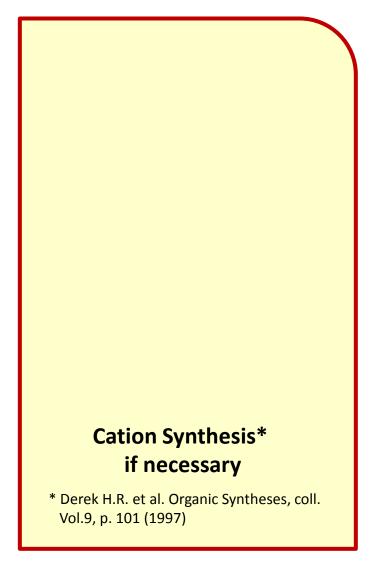
 Hydrocarbon membrane + Perfluorinated ionomer

Dissimilar MEA structures

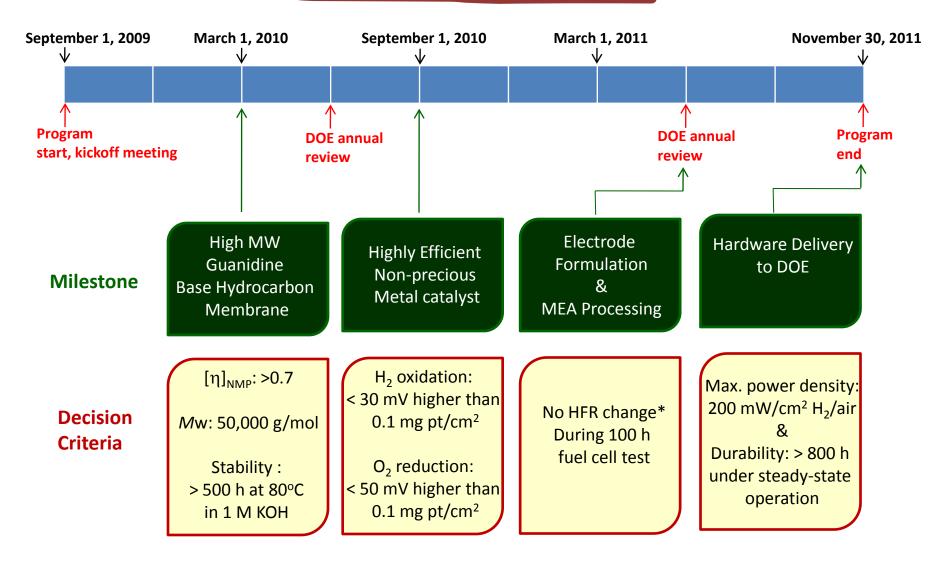
- Interfacial resistance issue
 LANL US Patent Applications 20060240301
 LANL US Patent Pending (2008)
 JPL US Patent 6391486 (2002)
- Catalyst dispersion issue
 LANL US Patent Pending (2009)



Fuel cell break-in: 80°C under fully humidified conditions Catalyst: 20% Pt/C: 0.2 mg/cm² Data: high temperature working group meeting, 2009 DOE AMR Meeting

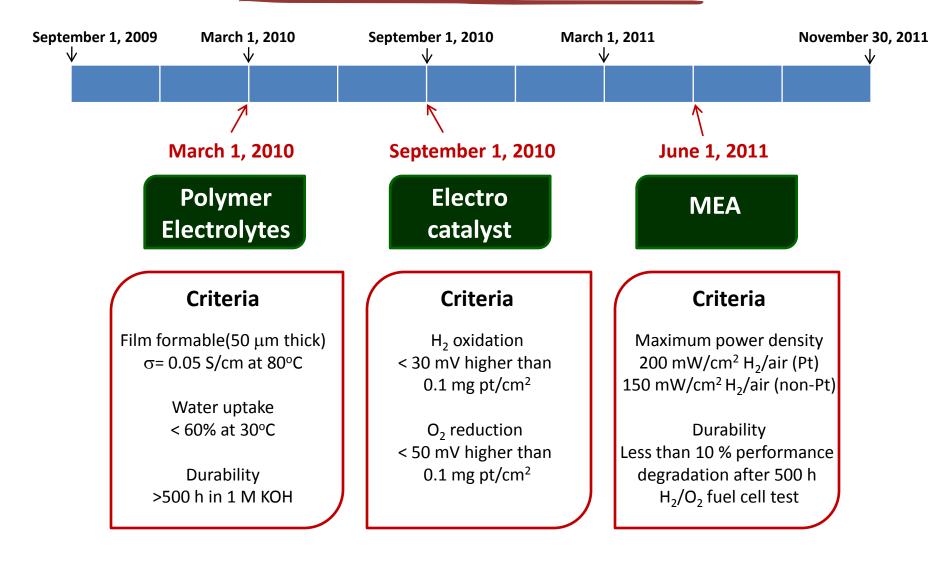

U N C L A S S I F I E D

Examples



a

EST. 1943


Project Timeline

* Pivovar et al. J. Electrochem. Soc. (2007) Vol.154, p.B739

Go-No-Go Decision Point

Organizations, Tasks and Budget

Organization	Tasks	Budget		
Los Alamos National Lab. PI: Y.S. Kim	PFSA ionomer synthesisElectrode processing	FY 1: 300 K FY 2: 300 K		
Sandia National Lab. PI: C. Fujimoto	 Hydrocarbon ionomer synthesis Guanidine base synthesis 	FY 1: 200 K FY 2: 200 K		
Jet Propulsion Lab. PI: S.R. Narayan	 Electro-catalyst synthesis and characterization MEA fabrication 	FY 1: 150 K FY 2: 150 K		

