Rangachary Mukundan (PI), Rodney Borup, John **Davey, Roger Lujan Los Alamos National Laboratory** Adam Z. Weber Lawrence Berkeley National Laboratory **Greg James Ballard Power Systems, Inc** Mike Brady **Oak Ridge National Laboratory Steve Grot** Ion Power, Inc

This presentation does not contain any proprietary or confidential information

Objective/Barrier/Target

The objectives of this project are 3-fold

- 1. Correlation of the component lifetimes measured in an AST to real-world behavior of that component.
- 2. Validation of existing ASTs for Catalyst layers and Membranes
- 3. Development of new ASTs for GDLs, bipolar plates and interfaces

Technical Barrier Addressed: A. Durability

- Durability of fuel cell systems operating over automotive drive cycles has not been demonstrated.
- Stationary fuel cells must achieve greater than 40,000 hours durability to compete against other distributed power generation systems.
- Research is also needed to understand failure mechanisms and develop mitigation strategies.

Technical Targets

Automotive : Durability with cycling: 5,000 hours (2010/2015): 2005 Status (2000 hours for stack and 1000 hours for system) Stationary : Durability: 40,000 hours (2011): 2005 Status = 20,000 hours

Approach

Objective1 : Correlation of the component lifetimes measured in an AST to realworld behavior of that component.

and Fuel Cell

Research

Approach (Objective 1)

BALLARD®

Materials

• New MEAs, and GDLs used in the bus modules for AST analysis

Field data analysis of 3 bus stacks from different locations and routes

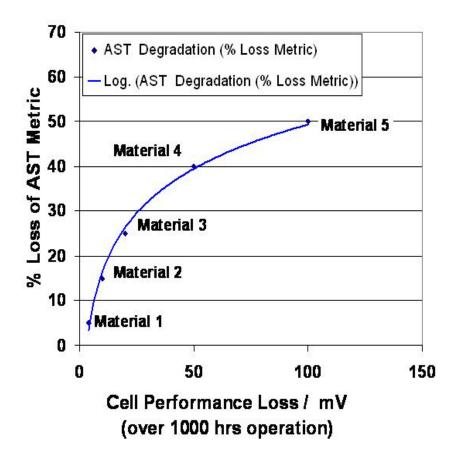
- Bus stack(s) are presently in service, or recently returned
- Data analysis from one bus module using a different MEA design
- Bus module data set will be Pareto plots showing importance of operating conditions (Voltage jumps, start/stop, etc.)

Testing of in-service bus stacks/modules in the lab to compare/confirm field results

- Analysis of MEAs selected from stacks
- Global and localized Loss Voltage Breakdown (Kinetic, Ohmic, Mass Transport)
- Localized cathode limiting current
- Global ECSA (anode and cathode)

FA Analysis of cross-sectioned MEAs Membrane thickness, Pt layer thickness, Pt particle size, Pt in the membrane, Ruthenium on the cathode

Approach (Objective 1)


Test materials with widely varying durability

- Custom membranes/MEAs supplied by ion power
- Bus MEAs provided by Ballard Power Systems
- Commercial MEAs obtained from W.L. Gore

Correlate loss in AST metric to cell performance (LBNL)

- ECSA to voltage loss in kinetic region
- Cross-over to OCV

Analyze EOL MEAs Correlate physical attribute to performance loss

Approach (Objective 2)

Objective 2: Validation of existing ASTs for Catalyst layers and Membranes

Voltage loss Breakdown

 $V_{\text{cell}} = U - \eta_{\text{ORR}} - \eta_{\text{HOR}} - \eta_{\Omega,\text{HFR}} - \eta_{\Omega,\text{elec}} - \eta_{\text{tx},\text{H}_2,\text{elec}} - \eta_{\text{tx},\text{H}_2,\text{GDL}} - \eta_{\text{tx},\text{O}_2,\text{elec}} - \eta_{\text{tx},\text{O}_2,\text{GDL}} - \eta_{\text{tx},\text{O}_2,\text$

Ignore anode kinetics and transport Membrane degradation $\eta_{\Omega,HFR}$ Pt Catalyst degradation η_{ORR} Carbon Corrosion $\eta_{tx,O_2,elec}$ GDL degradation $\eta_{tx,O_2,GDL}$ Catalyst layer ionomer degradation $\eta_{\Omega,elec}$

Better understand ionomer degradation and losses due to proton conduction in electrode

$$\eta_{\Omega, \, \text{cat}} = i \frac{R_{\text{sheet}}}{3 + \zeta}$$

LBNL Porous electrode model

- Verify single component degradation in current ASTs
- Correlate with fuel cell drive cycle data

Approach (Objective 3)

Objective 3 : Development of new ASTs for GDLs, bipolar plates and interfaces

GDL Durability

- Multiple materials supplied by SGL
- Develop an AST for durability of GDL (hydrophobicity loss)
- Test #1: Water Immersion (ex-situ)
- Test #2: Vapor Water in Oxidative Conditions (Air + potential in-situ)
- Test #3: GDL Cycling (T, RH, V in-situ)

Bipolar plate Durability

- Metal and Nitride (ORNL) bipolar plates
- Test #1. Corrosion measurement with simulated fuel cell conditions
- Test #2. Corrosion measurement with applied potential

MEA Interface Durability

- Test #1: Constant current operation at ≤-20 °C
- Test #2: Freeze/thaw cycling of un-purged cells to 40 °C

Project Timeline

Task S	ask Schedule, by Quarters (Q) with Milestones (M), Decision Points (G), Deliverables (D)							5 (D)								
Q Task	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1a				M1												
1b						M2										
1c						D1		G1 M3								
1d												G2 M4				M5
1e						M6										
1f						D2				M7						
2a(i)						M8										
2a(ii)												M9				
2a(iii)																M10
2a(iv)																
2a(v)					As Needed											
2b(i – ii)		D3 M11		M12		M13				M14		M15				M16
3a								M17								
3b							M18						M19			M20
3c									G3							M21
4a																D4
4b		As needed in support of USFCC AST Durability Round Robin														

Task 1. AST Testing Task 2: Cell life testing Task 3: Correlation of AST to Life Data

Task 4: Development of New ASTs / Verification of Existing AST

Project Timeline

Begin	M1	M2	M3		M4	M5
08/09	03/10	09/10	09/11		09/12	09/13
			G1 09/11	G2 01/12	G3 09/12	End 09/13

Milestones

- M1 : Ballard delivers BOL Bus MEAs and initial breakdown analysis
- M2 : Develop GDL AST
- M3 : Complete initial AST testing
- M4 : Complete Drive cycle testing with start up / shut down
- M5 : Final Statistical correlation of AST and Bus data to material property and AST

lifetimes to drive cycle of materials with varying lifetimes

Co-ordinate with USCar Tech Team and USFCC fuel cell council

Go/No go Decision

G1 : Stop using multiple Membranes and down-select a membrane if degradation mechanism of various initial membranes is identical

G2 : Initial Correlation of AST of life cycle and bus data – Redirect AST based on results

G3: Go/ No go on Freeze AST for MEA interfaces

Organization

LANL

- Co-ordinate project
- Perform all ASTs and Drive cycle testing
- Materials Analysis of EOL materials

Ballard Power Systems

- Analyze Bus Data
- Deliver BOL MEAs used in Busses
- Analysis of EOL MEAs

Ion PowerORNLDeliver MEAs with varying durability Deliver metal bipolar plates

LBNL

- Detailed Voltage loss break-down
- Statistical correlation of materials properties to lifetimes and AST metric loss
 of materials with differing durabilities

Budget

DOE Cost Share	Recipient Cost Share	TOTAL		
\$4,000,000	\$159,790	\$4,159,790		
96%	4%	100%		

YR 1	YR 2	YR 3	YR 4	CUMULATIVE			
\$1023k	\$1081k	\$1037k	\$1020k	\$4160k			

	FY09-10 (Year 1)
LANL	\$550k
Industrial + Univ. Partners (Ballard, Ion Power)	\$239k
Other National Labs (LBNL, ORNL)	<u>\$234k</u>
FY09-FY10 Total	\$1023k

The Institute for Hydrogen and Fuel Cell Research

Any Inputs/Needs

Continued feedback from USCAR Tech Team on ASTs

Any additional input from Stationary fuel cell OEMs

