

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

U.S. Department of Energy Hydrogen and Fuel Cell Technology Perspectives

Dr. Sunita Satyapal, Director - Fuel Cell Technologies Office

22nd World Hydrogen Energy Conference

Rio de Janeiro, Brazil – June 20, 2018

U.S. energy mix covers wide of energy sources

Note: Sum of components may not equal 100% because of independent rounding.

Source: U.S. Energy Information Administration, *Monthly Energy Review*, Table 1.3 and 10.1, April 2017, preliminary data

Hydrogen is one part of an 'all of the above' portfolio

Clean, sustainable, versatile, and efficient energy carrier

4 Key Messages

1. Progress on multiple fronts, increased industry activity and global interest

Upward trend with global fuel cell shipments

Electrolyzers: Over 100MW/year estimated global sales

*Courtesy of NOW, E4tech and partners: A collaborative effort to assess electrolyzer market potential

An exciting time for the transportation sector

Nearlysold or leased5,000in the United States

Commercial fuel cell electric cars are here

No petroleum, no pollution
Refuels in minutes
More than 360 mi driving range
Over 60 mpgge

FUEL CELL TECHNOLOGIES OFFICE

Interest in material handling equipment applications

More than 20,000 forklifts

Over 12 million refuelings

Long-Range, Heavy Duty Applications Emerging

Fuel cell delivery and parcel trucks starting deliveries in CA and NY

Fuel cell buses in CA surpass 19M passengers

Industry demonstrates first heavy duty fuel cell truck in CA

Stationary Power for Multiple Applications

Fuel cells provided backup power during Hurricane Sandy in the U.S. Northeast

Fuel cell power for maritime ports demonstrated in Honolulu, Hawaii

Fuel cells used to power new World Trade Center in NYC

Over 240 MW of fuel cell stationary power installed across more than 40 US states

Multiple H₂ and Fuel Cell Applications in the U.S.

*Excludes recent announcement from CA to invest \$235M in electric vehicles

2. Technical and institutional challenges remain and need to be addressed

U.S. Dept. Of Energy H₂ and Fuel Cells R&D Focus

Early R&D Focus	Applied research, development and innovation in hydrogen and fuel cell technologies leading to:		Energy securityEnergy resiliencyStrong domestic economy	
Early R&D Areas				
	K		Enabling	
Fuel Cells	Hydrogen Fuel	Infrastructure R&D	U.S. Department of Energy	
 PGM- free catalysts Durable MEAs Electrode performance PGM = Platinum group metals 	 Production Pathways Advanced materials for storage 	 Safety Manufacturing Delivery components Others 		

Technology targets in various applications guide R&D

More R&D needed to meet affordability targets

The Hydrogen Infrastructure Challenge

• Cost

• Reliability

• Availability

Gasoline History: Many diverse options Cans, barrels, home models, mobile refuelers

Source: M. Melaina 2008.

Source: Vieyra, 1979

Source: Milkues, 1978

Complementing Retail Stations: H₂Refuel H-Prize

DOE awards \$1M H-Prize to Simple Fuel for winner small-scale H₂ fueling design

© Ivys Inc., All Rights Reserved 2016

simple.fuel.[™]

Email: connect@ivysinc.com More info: www.teamsimplefuel.com Ivys Energy Solutions (MA) McPhy Energy (MA) PDC Machines (PA)

More liquid stations planned in the U.S.

Based on data from NREL

3. H₂@Scale concept: value, volume and versatility

HZ

How much hydrogen for 1 car?

12,000 miles per year = 200 kg or 0.2 tonnes

60 miles per kilogram per year per year

How much hydrogen for many cars?

H₂@Scale Energy System

Hydrogen Energy Storage is Scalable

Overview of Energy Storage Technologies in Power and Time

Image: Hydrogen Council

Hydrogen can be used to monetize surplus electricity from the grid, or remote, off-grid energy feedstock (e.g. solar, wind) for days to months.

The Duck Curve 101 - Example

The Duck's belly is getting bigger

Two Concerns:

Low Net Load:
 flexibility to reduce
 baseload
 generation
 resources is limited

High Ramp Rates
 in Evening:
 flexibility of other
 generation to ramp
 up is limited

Can be addressed by

Lab testing electrolyzers' value for ancillary services

First Ever Validation of Frequency Regulation with Electrolyzers

H₂@Scale: Enabling renewable energy transport?

Where we find abundant solar and wind energy

In Male

...and deliver it or co-locate distributed generation with demand for certain applications

Analysis underway to guide future plans

Cost of long distance electricity transmission is high

Can H₂ or H₂ carriers be an option?

×

Hydrogen Pipelines

H₂@scale can enable increased renewable penetration

H2@Scale: Nationwide Resource Assessment

Labs assess resource availability. Most regions have sufficient resources.

Red: Only regions where projected industrial & transportation demand exceeds supply.

Lab Pls: Mark Ruth, Bryan Pivovar, Richard Boardman, et al

4. Continued collaboration and information sharing are key moving forward

H₂ Safety Information Sharing Resources Available

H₂Tools.org : A one stop resource for hydrogen safety

h2tools.org

 Includes resources on safety best practices, first responder training, and H₂ codes & standards

- Site visit tracking shows a global reach:
 50% of visits have been international after launch
- Over 250,000 site visits
- Training resource translated into
 Japanese. Interest in other languages.

IPHE: International Partnership for H₂ and Fuel Cells in the Economy

- Share information on H₂ and fuel cells, lessons learned, best practices
- Increase international collaboration to accelerate progress

May 2018

Launched 2003 and includes 18 countries and the European Commission

Examples of Brazil and U.S. Collaboration on Energy

- Fossil energy, energy efficiency, nuclear energy and other technical exchanges (U.S.-Brazil Strategic Energy Dialogue or SED)
- Natural gas energy storage (DOE Fossil Energy Office, Energy Information Administration and Brazil's Energy Planning Authority)
- **Buildings energy efficiency** (DOE Lawrence Berkley National Laboratory and Brazil's Federal University of Santa Catarina)

Opportunities for outreach and to increase awareness

Celebrate Hydrogen & Fuel Cell Day October 8 or 10/8

(Held on its very own atomic- weight-day)

Information and Training Resources to Increase Awareness

INCREASE YOUR

Download for free at: energy.gov/eere/fuelcells/downloads/ increase-your-h2iq-training-resource

Learn more at: energy.gov/eere/fuelcells

Thank You

Dr. Sunita Satyapal

Director Fuel Cell Technologies Office <u>Sunita.Satyapal@ee.doe.gov</u>

energy.gov/eere/fuelcells