

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

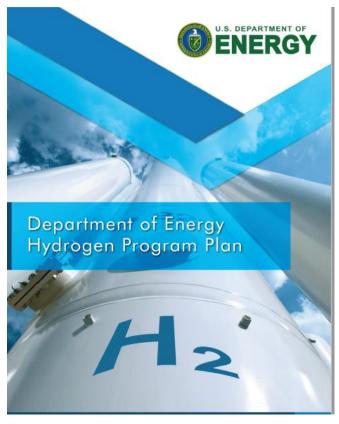
U.S. Department of Energy Hydrogen and Fuel Cell Technologies Office Perspectives

Dr. Sunita Satyapal Director, Hydrogen and Fuel Cell Technologies Office Resources for the Future (RFF) - Hydrogen Conference March 9, 2021

President's Plan for a Clean Energy Economy: 9 Key Elements

- **1. Take executive action** on Day 1
- 2. Enact an irreversible path to economy-wide netzero emissions by 2050
- 3. Act and lead globally
- 4. Public investment in clean energy and innovation
- 5. Accelerate the deployment of clean technology throughout our economy
- **6. Make environmental justice a priority** for all federal agencies
- **7. Require public companies to disclose climate risks** and GHG emissions
- **8. Create millions of good-paying jobs** with the choice to join a union
- **9. Fulfill our obligation to communities** and workers that have risked their lives to produce fossil fuels

100% carbon-pollution-free electric sector by 2035


from Executive Order on Tackling the Climate Crisis signed Jan 27, 2021

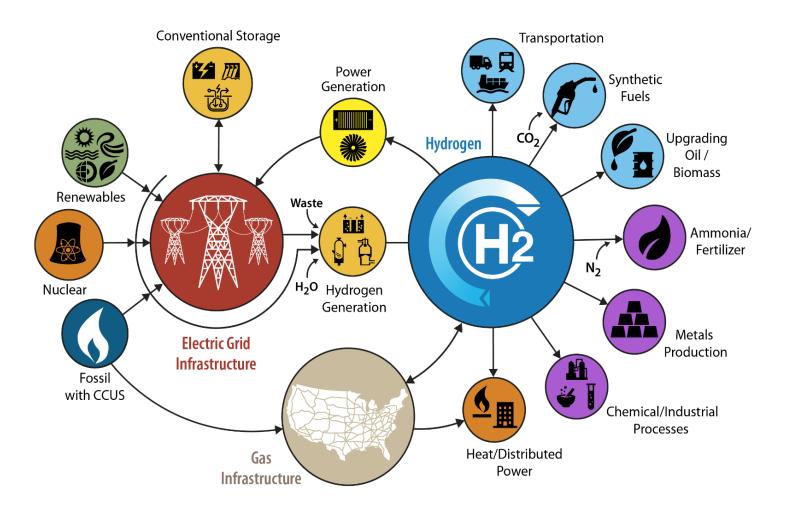
whitehouse.gov/briefing-room/presidential-actions/2021/01/27/executiveorder-on-tackling-the-climate-crisis-at-home-and-abroad/

US DOE Hydrogen Program Plan Released November 2020

Hydrogen is one part of a broad portfolio of activities

www.hydrogen.energy.gov

Examples of Key DOE Hydrogen Program Targets


DOE targets are application-specific and developed with stakeholder input to enable competitiveness with incumbent and emerging technologies. These targets guide the R&D community and inform the Program's portfolio of activities. Examples include:

- \$2/kg for hydrogen production and \$2/kg for delivery and dispensing for transportation applications
- \$1/kg hydrogen for industrial and stationary power generation applications
- Fuel cell system cost of \$80/kW with 25,000-hour durability for long-haul heavy-duty trucks
- On-board vehicular hydrogen storage at \$8/kWh, 2.2 kWh/kg, and 1.7kWh/l
- Electrolyzer capital cost of \$300/kW, 80,000 hour durability, and 65% system efficiency
- Fuel cell system cost of \$900/kW and 40,000 hour durability for fuel-flexible stationary high-temperature fuel cells

Key Hydrogen Technology Options

	NEAR-TER	RM	LONGER-TERM			
Production	Gasification of coal, biomass, and waste with carbon capture, utilization, and storageAdvanced fossil and biomass reforming/conversionAdvanced biological/microbial conversionElectrolysis (low-temperature, high-temperature)Advanced thermo/photoelectro-chemical H2O sp					
Delivery	Distribution from on-site pro Tube trailers (gaseous H ₂) Cryogenic trucks (liquid H ₂)	production Widespread pipeline transmission and distribution Chemical H ₂ carriers				
Storage	Pressurized tanks (gaseous H ₂) Cryogenic vessels (liquid H ₂)	Geologic H ₂ storage (e.g., caverns, depleted oil/gas reservoirs) Cryo-compressed Chemical H ₂ carriers Materials-based H ₂ storage				
Conversion	Turbine combustion Fuel cells	Advanced combustion Next generation fuel cells	Fuel cell/combustion hybrids Reversible fuel cells			
Applications	Fuel refining Space applications Portable power	Blending in natural gas pipelinesDistributed stationary powerTransportationDistributed CHPIndustrial and chemical processesDefense, security, and logistics applications	Utility systems Integrated energy systems			

H2@Scale: Enabling affordable, reliable, clean, and secure energy

- Hydrogen can address specific applications across sectors that are hard to decarbonize
- Today: 10MMT H₂ in the U.S.
- Economic Potential: 2 to 4x more

Strategies

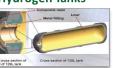
- Scale up technologies in key sectors
- Continue R&D to reduce cost and improve performance, reliability \$1 to \$2/kg H₂
- Address enablers: harmonization of codes, standards, safety, global supply chain, workforce development, sustainable markets

Source: U.S. DOE Hydrogen and Fuel Cell Technologies Office, https://www.energy.gov/eere/fuelcells/h2scale

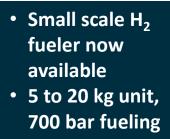
Examples of DOE-Funded Innovation and Impact

Impact due to HFTO Funding Innovation H₂ and fuel cell patents enabled by HFTO funds of H₂ and Approx. fuel cell patents come from National Labs **Market Impact** More **Technologies** Than Commercialized 30 by private industry And with potential Over to be commercial in 65 the next 3 – 5 years Can be traced back to HFTO R&D

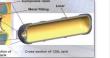
Examples of Technologies Enabled

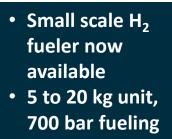


PEM Electrolyzer System Electrolyzer System Giner **Proton Series**



\$1M H-Prize H2Refuel Winner: SimpleFuel

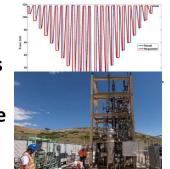




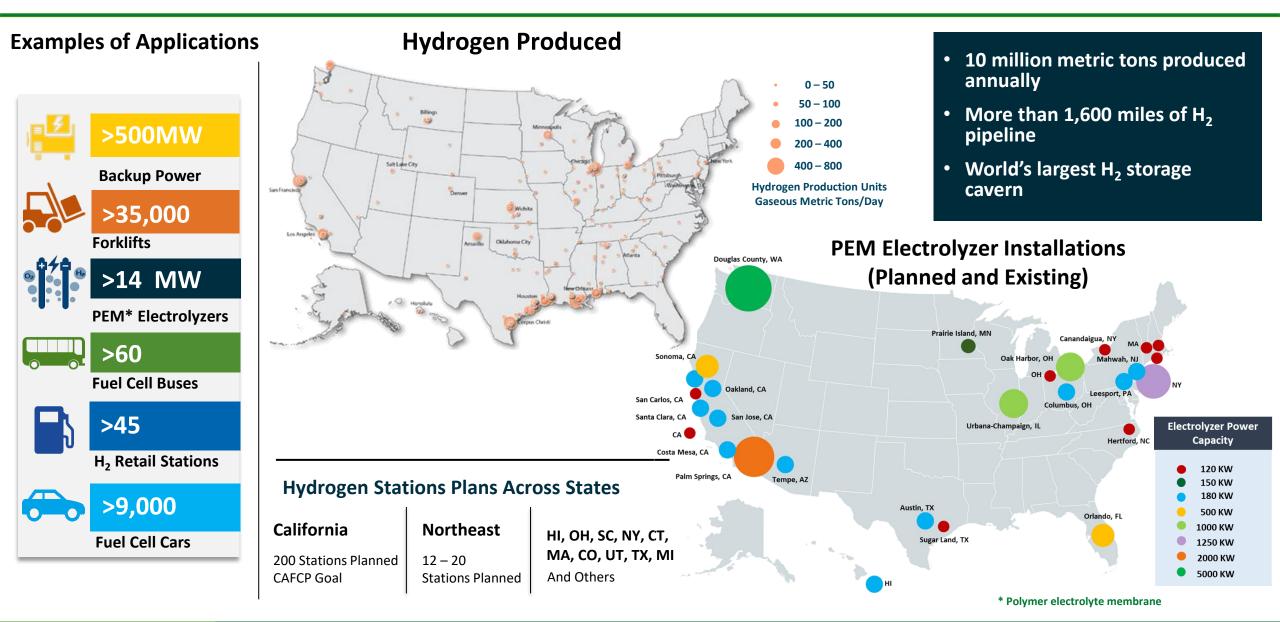
Optimized 129L Tank Quantum Technologies

Plug Power (GenDrive FCs **Hydrogen Tanks**

First-of-a-Kind Demonstrations

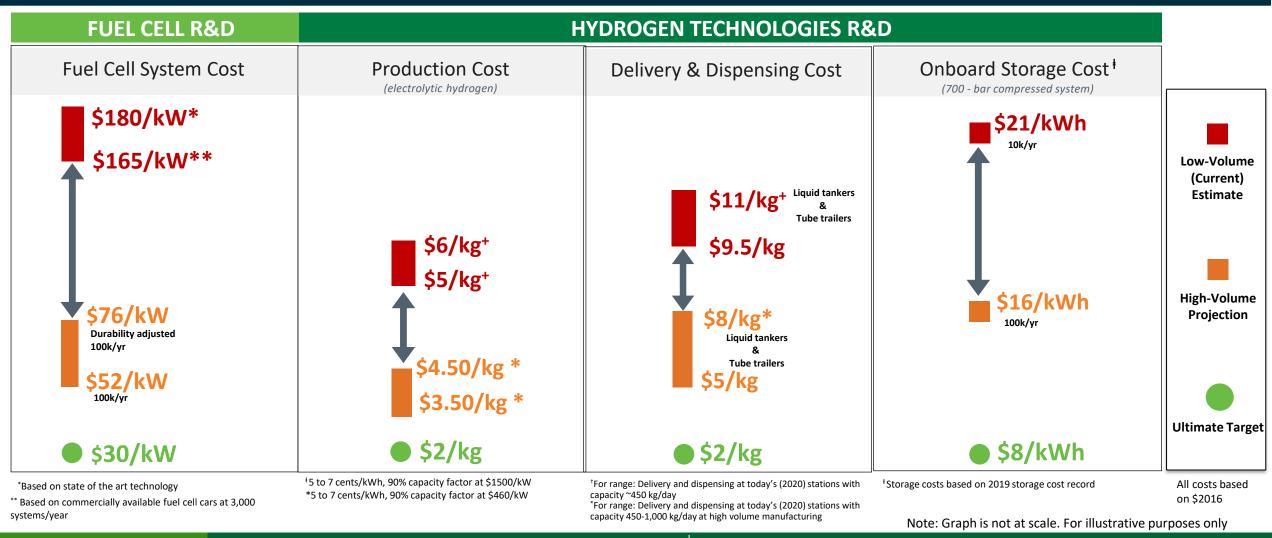

- Marine application- ½ ton H₂ fueling for vessel
- Data center- 1.5 MW
- First ground support equipment

- Mobile H₂ fueler
- First nuclear to H₂ demos
- First tri-gen system
- Dynamic response of electrolyzers and systems integration
- First H₂+CO₂ to renewable methane demo
- H₂/NG blending



Example: American Recovery Act cofunded few hundred fuel cell forklifts and backup power units for cell phone towers

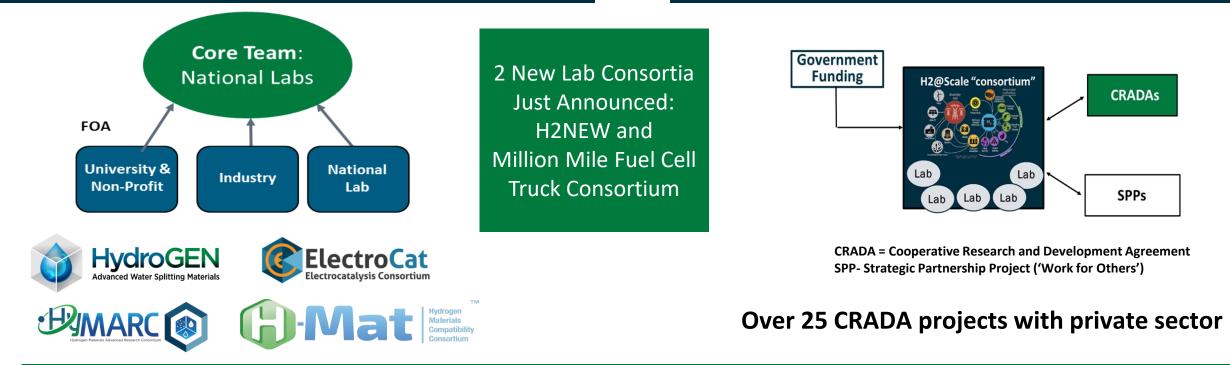
Today ~ 40,000 systems commercially deployed at major companies, millions of H₂ fuelings to date


Snapshot of Hydrogen and Fuel Cell Applications in the U.S.

Cost Reduction Efforts Underway

R&D focus is on Affordability and Performance: DOE Targets Guide R&D

Key Goals: Reduce the cost of fuel cells and hydrogen production, delivery, storage, and meet performance and durability requirements – guided by applications specific targets

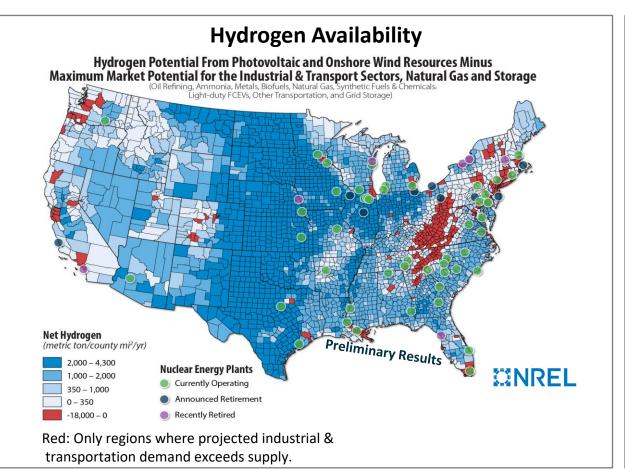


U.S. DEPARTMENT OF ENERGY

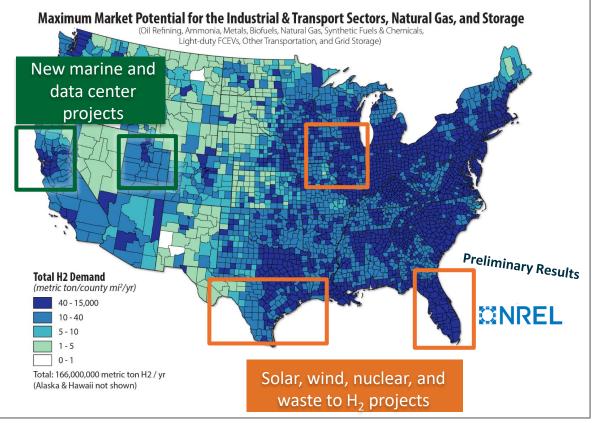
OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

Key Programmatic Areas

Includes early stage R&D: Funding Opportunity Announcements (FOAs) for industry, universities and national labs, including consortia And includes later stage RD&D: Leverages private sector for large-scale demonstrations and cost-shared RD&D. Demos in TX, FL, Midwest, CA and more


Announced FY20: \$64M for 18 projects including R&D and demonstrations at ports and datacenters, and a workforce development program . Includes collaboration with Advanced Manufacturing Office and Vehicles Office in EERE

Examples of H2@Scale Analysis and Demonstration Projects


Assessing resource availability. Most regions have sufficient resources.

New H2@Scale demonstration projects cover range of applications

*Includes 1 project by Office of Nuclear Energy

Hydrogen Demand Potential

Example of H2@Scale Demonstration Projects

Demonstration of H2@Scale: Different regions, hydrogen sources and end uses

Texas		Florida		Site selection in process	
Total Budget	Wind, Solar,	Total budget	Solar-to-H ₂ with	Total Budget	Nuclear-to-H ₂ for
\$10.8M	RNG/Waste	\$9.1M	End Uses	\$7.2M	at-Plant Use

Examples of H2@Scale Demonstration Projects -2020

Demonstration of H2@Scale: Different regions, hydrogen sources and end uses

Marine A	Application	H ₂ for Da	ta Center	H ₂ for Steel	Production
Total Budget \$16M	Electrolyzer and fuel cell for marine application	Total Budget \$13.7M	PEM fuel cell for data center power	Total Budgets \$5.7M & \$7.2M	DRI-process and grid-interactive steelmaking
PIER 130' x 40' x 7' Floating Barge Listchical Controls High Pressure High	H ₂ Delivery Truck		ety, and Analysis Safety and site lessons learned Logistics and scalability Liquid H Site Hydrogen H Gaseous H Fuel Cell Data Center Data Center	Fe ₅ O ₅ (HEOM 65% H2-35% H2O 50EC Exhausts @>95% CO ₂ to storage/utilization O ₂ Reducing 90% H2-10% H2O (Bas heating Wotural Gas (ge-hoving burnet)	Reduction of 30% in energy
Power for Ballery Charging	GH; Vessel Supply	DC bus system: fuel cell + battery Single or shared load capability Fast response and grid support	1.5 MW fuel cell Backup power performance testing Ancillary services performance testing Dynamic operation and control	Electricity H ₂ Storage	1 ton/wk iron prod.; scaled to
	ritime H_2 refueling on up to 530 kg H_2 /day		o meet data center nd future scale up	Grid Integration Electrolyzer Scrap - Lime - Carton Scrap - Steel - Fe Fi	HBI 5,000 HBI 5,000 HBI 100,000 Task 3 and 10 ton/day

Collaboration

"No one can whistle a symphony. It takes a whole orchestra to play it." - H. Luccock

Examples of Global Collaboration

Coordinating across global partnerships: IPHE, Ministerials, Mission Innovation, IEA, etc. Global Center for Hydrogen Safety established to share best practices, training resources and information

The International Partnership for Hydrogen and Fuel Cells in the Economy

Enabling the global adoption of hydrogen and fuel cells in the economy

Elected Chair and Vice-Chair, 2018

New Chair: Dec 2020: The Netherlands Vice Chairs: U.S. Japan

www.iphe.net

Key Activities: Harmonization of codes & standards, Information sharing on safety, policies, regulations, analysis, education. Task force on developing H₂ production analysis methodology to facilitate international trade, global RD&D monitoring

Hydrogen and Clean Energy Ministerials

Mission Innovation Hydrogen Challenge Formed Cover 20 countries

International

Energy Agency

www.aiche.org/CHS

U.S. DEPARTMENT OF ENERGY

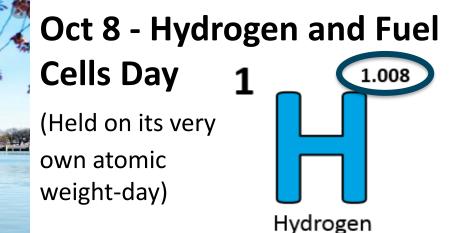
Workforce Development, Training and STEM

Hydrogen Education for a Decarbonized Global Economy (H2EDGE)

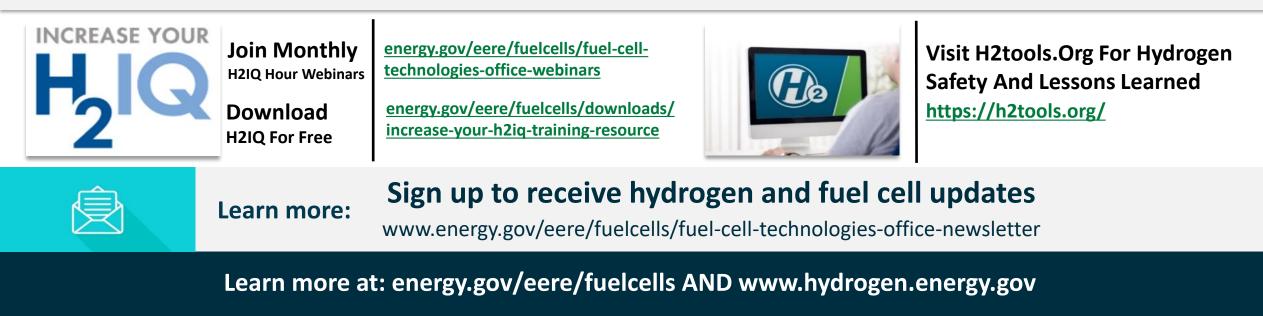
Objectives:

- Enhance workforce readiness through training and education (T&E)
- Develop T&E materials and deliver professional training courses and university curriculum content
- Collaborate with industry and university partners to develop certifications, credentials, qualifications, and standards for training and education needs
 Recipient: EPRI
 Partners include: GTI, OSU, Purdue, UD, EA

June 2020: DOE EERE announces \$20M investment at U of TN to advance workforce development in emerging energy fields, partnering with ORNL and Oak Ridge Institute (ORI)


- ORI will develop model workforce development program and partnerships with universities, agencies, and national labs
- Focuses on EERE related technologies including hydrogen and fuel cells

Resources and Events


Save the Date

Week of June 7, 2021 Annual Merit Review and Peer Evaluation Meeting (AMR) for the DOE Hydrogen and Fuel Cells Program

Resources

Thank You

Dr. Sunita Satyapal

Director, DOE Hydrogen and Fuel Cells Program Sunita.Satyapal@ee.doe.gov

Looking for more info? #H2IQ

hydrogen.energy.gov