Transitioning From Fuel Cells to Redox Flow Cells

T. Zawodzinski and Matt Mench University of Tennessee and ORNL

Acknowledgments

\$\$
DOE-OE
EPRI
GCEP
NSF EPSCOR (TN SCORE)
UTK Governor's Chair Fund

Partner in Crime Matt Mench

'Peeling the Onion' Personalized History of PEM Fuel Cells

We May Recapitulate This for RFBs

Large Single Cell
Stack
System

nall Single

Cell

ayers of the Onion Hot Topic du Jour

- Water Management, Membranes
 - Late '80's, early '90's
- Reformate Tolerance, DMFC's
 - Mid '90's
- High Temp Membranes
 - Late '90's
- Durability
 - Early '00's

- Membrane/ Water
- Cathode
- Impedance
- Anode/Whole Cell
- Stack

Modeling

Catalysis

Transitioning to RFBs What Could Remain the Same

1. Materials

Membranes, diffusion media, electrodes, hardware

2. Diagnostics

- Flow batteries are a lot like fuel cells
- Polarization curves, ASR, segmented cells
 - This is NOT the way battery people test!

Transitioning to RFBs What is Different

- 1. Battery Chemistry
 - Many different chemistries
 - Multiple components
 - Different reactivity challenges
- 2. Need to account for state of charge
- 3. Energy density, power density concerns different
- 4. Cost drivers different

Membranes from Fuel Cells to RFBs

1. The Good

- Many different membranes available
 - PFSAs, Hydrocarbons

2. The Not so Good

- Starting over to understand durability; multiple chemistries to take into account
- Cross-over is more prevalent and a big issue; lots of water pumping as well

3. The Ugly

Multiple components lead to complex transport

4. The Just Plain Different

Both membranes and porous separators used

Transitioning Electrodes to RFBs

1. The Good

- Many different porous carbon materials for electrodes
- Don't always have catalysis
- 2. The Not so Good
 - Transport issues are rather different
 - Need to sort out the loss mechanisms
- 3. The Ugly
 - Air electrodes are real issues
- 4. The Just Plain Different

All phases used; concentration polarization

Transitioning Cells and Stacks to RFBs

1. The Ugly

 Typical flow cell design has horrible performance characteristics

2. The Good

- Flow-by cells (typical fuel cell architecture) works
 - Bipolar plates?

3. The Not so Good

- Need to deal with shunt currents
- Multiple phases?

Diagnostics for RFBs

1. The Good

Many standard approaches for battery testing

2. The Not so Good

- This has fuel cell characteristics and these FC test methods yield more information
- Significant need to transfer from FCs

3. The Ugly

Simple descriptions often do not exist

4. The Just Plain Different

Complex electrolytes and transport issues

Managed by UT-Battelle for the Department of Energy

Performance in Flow Systems: Polarization Curves

not normally used in battery work!

We separate and measure (both charge, discharge):

- Electrode polarization for each electrode
- Membrane resistance
- Electrode ionic/reagent mass transport resistance
- GDL mass transport resistance

Augmented by impedance tests as well as ex situ component tests

Needed Improvements and Measurements

We separate and measure (both charge, discharge):

- Electrode polarization for each electrode
 - Reference electrode
- Membrane resistance
 - High frequency resistance at each pol curve point; conductivity
- Electrode ionic/reagent mass transport resistance
 - Analysis of IR-corrected pol curve; impedance
- GDL mass transport resistance
 - Analysis of IR-corrected pol curve; impedance
 - PLUS: cross-over measurements, membrane transport studies of all species

Missing Diagnostics that we enjoy in fuel cells

- ESA measurements
- Detailed understanding of flow and current distribution
- Detailed descriptions of what goes where and how fast
- Life testing/durability methods
- And one other thing: patience!

Asymmetric Electrode Polarization

- The V 3/2 electrode also dominated overpotential for a discharging polarization curve.
- Kinetic losses not large...

Reference electrodes

Dynamic hydrogen electrode

- Connected two Pt wires to a 9 V battery and a ~1.5 MΩ resistor, resulting in ~6 μA of current flowing*
- The "working electrode" of the DHE formed a layer of hydrogen bubbles at very little overpotential

Potentiometer 9V battery

Pt working electrode

Pt counter electrode

DHE is sandwiched between two N11

Also tested a commercially-supplied FlexRef DryRef reference electrode, but found vanadium infiltrated the DryRef

- 1/8" PTFE tube filled with proprietary gel and a silver wire

NBO liquid junction

Conductivity of Membrane Equilibrated in Sulfuric Acid Solutions

Highly concentrated sulfuric acid solutions reduce membrane conductivities

Membranes in Contact with Strong Acid Solution

The HCI Case

Comparison of Conductivity of Nafion 117 Equilibrated with HCl solutions, Water

Vanadium Electron Paramagnetic Resonance

Electron configuration:

Vanadium V^{5+} : $1s^22s^22p^63s^23p^6$

 $I_{\text{vanadium}} = 7/2 \quad V^{4+}: 1s^2 2s^2 2p^6 3s^2 3p^6 4s^0 3d^1$

 V^{3+} : $1s^22s^22p^63s^23p^64s^03d^2$

 V^{2+} : $1s^22s^22p^63s^23p^64s^03d^3$

Dry: $R_V = 2.6 \times 10^8 \,\text{s}^{-1}$

Wet: $R_V = 8.4 \times 10^8 \, \text{s}^{-1}$

Crossover in Vanadium Redox Flow Batteries (measurements under way)

Managed by UT-Battelle for the Department of Energy

Oxygen crossover from Positive electrolyte solution

Rxn @ positive side: $VO^{2+} + H_2O \rightarrow VO_2^+ + 2H^+ + e^-$

Rxn @ negative side: VO²⁺ + 2H⁺+

$$e^{-} \rightarrow V^{3+} + H_2O$$
 then $V^{3+} + e^{-} \rightarrow$

V2+ reacts quickly with oxygen. The negative side is kept under nitrogen to prevent that.

If O2 crosses the + membrane from the positive side:

$$4V^{2+} + O_2 + 4H^+ \rightarrow 4V^{3+} + 2H_2O$$

UV-Vis Spectrometry

Vanadium ions in solution have different colors and distinct UV-VIS spectra

1M Vanadium in aqueous H₂SO₄ solutions / 5M total sulfate

0.5 mm lightpath

ALS SEC2000 spectrometer

Excess Absorption Suggests a Third Species

 $ExcessAbsorbance = S_{meas} - \alpha S(VO_2^+) + (1 - \alpha)S(VO^{2+})$

1:1 Complexes Have Been Observed in VO²⁺/VO₂+ Solutions in HClO₄

► The peak in excess absorbance near 0.5 SOC suggests a 1:1 complex, $VO_2^{+} + VO_2^{+} \rightarrow V_2O_3^{3+}$

Also inferred from broadening of ⁵¹V NMR peaks*
(Okamoto, K. Woo-Sik, J. Tomiyasu, H.; Fukutomi, H. Inorganica Chimica Acta. 1988, 143, 217-221.)

Absorbance of V2+/V3+ in an Operating VRFB

Dramatically Increased Performance

Increased VRB Max Power Density by ~10x

Comparison to literature reports of performance

Performance gain obtained using new architecture, materials

Peak Power density ~ 800 mW/cm²

Core Issues

It will eventually come back to the membrane!

Cost Modeling is tricky.

As we increase power density/current density, membrane resistance will become limiting again

