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Background

PEMEFC MEA

E L 02 F I ow

Pt/C | Nafion

Gas & H,0, pores
Electrode (5—-15 um)
Nafion lonomer
lonomer: H*

100 % RH

15 min/point

100’s of mg Cat

L = 0.2-0.4 mgp,/cm?

Thin-film RDE

Dissolved O,

Pt/C | Nafion | Acid
Acid Flooded pores
Electrode (< 0.1 um)
Perchloric Acid: H*
lonomer: Binder, Disp.
Liquid Electrolyte
Scan Rate: ~20 mV/s
10’s of mg Cat

L = 4-36 pgp/cm?

5mm disk

Trends of activity and durability in Rotating Disc Electrode (RDE)
studies can be used to predict trends in Proton Exchange

Membrane Fuel Cells (PEMFCs).

Kocha, S. S., et al., "Influence of Nafion on the Electrochemical Activity of Pt-based Electrocatalysts.”" ECS Trans. 2012, 50.



Information Obtainable from RDE Measurements

Besides its usefulness as a tool to predict electrocatalyst activity and durability in
fuel cells, the RDE technique allows us to carry out the following diagnostics.

Cyclic Voltammograms under N,
« HUPD = ECA (m?/g)
¢ CO Chemisorption=> ECA (m?/g)
« Cu UPD= ECA (m?/g)
 Double Layer Capacitance
* Pseudo-Capacitance (oxide coverage)
» Onset potential of support corrosion
« Short term durability for thousands of cycles
|-V Curves under O,
« Electrocatalyst specific and mass Activity
« Poly-Pt, Pt/C, Pt-alloy/C, Pt core-shell/C, Extended thin films, NPGM
* Reaction Order w.r.t. PO,
» Tafel slopes
« Effect of contaminants in electrolyte or reactant gases
« Electrolyte anion adsorption
Peroxide Generation using Ring disc (RRDE)

Complementary Techniques
 EIS, EQCN, etc.,



Experimental Aspects
of

RDE Testing



Electrochemical Set-up/Glassware Cleaning
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Using poly-Pt disk & obtaining specific
activity values of I > 2.0 mA/cm?,, can be
considered a measure of acceptable cell
cleanliness.

Contamination of cell/electrolyte poisons
the catalyst and is one of the primary
reasons for low and scattered activity data.

“Concentrated = Boiling in
Acid/Oxidant DI Water




Ink Formulation, Electrode Preparation

Bath Sonicator _. anobalance

Kocha, S. S., et al., ECS Trans. 2012, 50.



RDE Conditioning or Break-in

0.05-1.2 V, 100 mV/s, ~50 cycles, Pt/C, 25°C, N,
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Conditioning protocol may have to be varied with electrocatalyst material.
Conditioning is complete when the CV becomes invariant with time,

cycles.




RDE Analysis

ORR Curves for NRL Pt/[TaOPO4/VC] (HT-650°C 2hrs N,/H,)
Pt loading = 21.43ug,, cm™ (water based ink), v = 20mV s™
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RDE Test Protocol
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cathodic scan, 25°C, 0.1M HCIO,, 200
IR corrected, background current 100
corrrected & corrected to 100 kPa 0

reaction order w.r.t O, of 0.85.

Voltage Profile Protocol ——
1.0V

Protocol parameters such as:
Scan Direction, Scan Rate, and
Voltage Range will affect the
measured catalyst activity.

mM2/gp

Pt/HSC



Corrections Applied to ORR I-V Curves

»Background current correction

At lower potential scan rates, the effect of impurities and the formation of surface oxides suppress the
measured ORR activity; at scan rates above 20mV s, capacitive current effects are higher. The
background current is measured by running the ORR sweep profile (e.g., 1.03 V->0.05 V->1.03 V at 5
and 20 mV s and 1600 rpm) in N,—purged 0.1 M HCIO, either before or after the ORR measurements
to account for capacitive current contributions. This background current is subtracted from the
experimental ORR current to eliminate any contributions of capacitive current.

»Measurement and active compensation of solution resistance
Solution resistance is caused by a combination of low electrolyte concentration and temperature as
well as the distance of the Luggin capillary or Reference electrode to the surface of the working

electrode. Expected value for resistance in 0.1 M perchloric acid is ~20 ohms.
V. Stamenkovic et al., “On the importance of correcting for the uncompensated ohmic resistance in model experiments
of the Oxygen Reduction Reaction”, J. Electroanal. Chem. 647 (2010) 29-34.

»Corrections for oxygen partial pressure

The atmospheric pressure decreases with altitude and so labs such as those at NREL, Golden, CO
(~6000 ft, ~83 kPa) have to apply a correction for limiting current as well as kinetics so that the data is
normalized to 100 kPa O,. Limiting currents are expected to be ~5.7 mA/cm? @ 1600 rpm when

corrected to 100 kPa O.,.



Parameters Affecting RDE Measurements
of
Electrochemical Activity



Parameters Affecting RDE Measurements

e Type of Solvent
Ink e Water/Solvent/Nafion

EJUDPIEUICIIN « Ultrasonication type, time
and intensity

Electrode

e Surface Preparation: Polishing, cleaning
e Material: GC, Au, etc
e Film Quality and uniformity

Deposition & N Rotating/Stationary
DIl Re Azl ¢ Atmosphere: N,, air, other
N Al d{ele[-I * Gas Flow Rate

e Temperature

A number of factors affect the “measured activity” of catalysts in RDE
measurements besides the obvious measurement protocol, operating test
conditions & proper analysis/corrections applied to the data.




Stationary Drying: Film Quality

19.7% Pt/VC (ETEK) Typical cyclic voltammogram (CV) recorded
(a) Bad film for Pt/C catalyst in N,-purged 0.1M HCIO,

Uniform film on edges

Pt-H oxidation O, evolution
6e-5 ' ,\‘ " Pt-OH then Pt-O formation
on-uniform fi de-5 1
in the center 26.5 -
<
= 0
FLAT (1x) ANGLE (1.5x) E -2e-5 1
_ = 4e-5 - Pt-O reduction
(b) Intermediate film 3
Thinner film on -6e-5 .
the center ol . .
_ 8e-5 1 \ Intermediate film
_Fllm looks | . H, evolution Good film
uniform over the Ae-4 1 . ’ v . . —
entire surface 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Uniform film on the E vs. RHE/V

edges Typical ORR curves recorded for Pt/VC
FLAT (1x) ANGLE (1.5x) .
_catalyst in O,-purged 0.1M HCIO,
(c) Good Film '% 1 Bad film 5mV s™
£ Intermediate film 5mV s
g 0 Good film 5mV s™ ~
o ——— Good film 20mV s™
Uniform film o At=To———g— i
over the entire g Mixed kmetlucl-:slcucsgg ::Jrat\rfolled region
glassy carbon < 2]
surface E .3
=) Diffusion limited current density plateaux (J, )
g 41 0.20V < E <0.70V
FLAT (1x) ANGLE (1.5x) g
g
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Stationary drying: Thin-film Morphology

a) optical microscope

» Fairly uniform on the edge of electrode

» Thinner region towards the center of electrode
» Coffee ring structure at the edge

» Center: Non-homogeneous, not fully covered
» Edge: Fairly dense and homogenous

»Non uniform film thickness

» Coffee ring structure apparent near the edge
»Regions of great non-homogeneity throughout
- the film

Y. Garsany, I.L. Singer, and K.E. Swider-Lyons, Impact of film drying procedures on
the RDE characterization of Pt/VC electrocatalyst, J. Electroanal. Chem. 662 (2011)

396-406.
PJ Yunker et al. Nature 476, 308-311 (2011) doi:10.1038/nature10344




Rotational drying: Thin-film Morphology

a) optical microscope
»Very uniform over the entire GC surface

»No Coffee ring structure visible

» Dense film covering the entire GC surface
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»The 3D picture obtained for the
rotational film clearly demonstrates that
the rotational drying method produced a
uniform film over the entire glassy carbon
surface

382 ym :

. . I1mmI .
d) 3D optical profilometer Y. Garsany, |.L. Singer, K.E. Swider-Lyons, J. Electroanal. Chem. 662
(2011) 396-406.




Drying method: Electrochemical Performance

19.7% PYVC (E-TEK)
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Y. Garsany, |.L. Singer, and K.E. Swider-Lyons, J. Electroanal. Chem. 662 (2011) 396-406.



Reproducibility: Rotational vs. Stationary Drying

B3 stationary films
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Parameters Affecting RDE Measurements

e Type of Solvent
e Water/Solvent/Nafion

e Ultrasonication type, time
and intensity

Electrode

e Surface Preparation: Polishing, cleaning
e Material: GC, Au, etc

Deposition & |8 Atmosphere: N,, air, other

e Gas Flow
e Temperature

Drying of Film
on Electrode

A lot of time and effort is spent on optimizing the ink formulation for

catalyst layers in MEAs of PEMFCs. Is such an optimization necessary
for RDE films?



Activity: Water/IPA Ratio Optimization for Catalysts

Specification of the Pt-based carbon supported catalysts (original dry powders) used in formulating inks and TF-RDEs.

Sample Pt loading (wt.%)  Crystallite size XRD (nm)  Particle size TEM (nm)  Cat surface area BET(m® g 'car) Pt Surface area CO (m? g5
TEC10ESOE (PtfC) 46 24 23 311 132
TEC10ES0-HT (PtfC-HT) 50 456 5.0 365 78
TEC36ES52 (PtrCofC) 46.5 43 53 - -
120 600
B ECA/m' g Pt
- 1o o ‘ t P ‘ £ Sl i>f’ufti:m'2-|’l
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¥ 1 1 1 1 | Fig. 6. ECA, specific activity i; and mass activity iy, for 3 Pt-based catalysts (Pt/C,
i 1] 1] 30 40 )] il Pt-HT[C and PtCo/C) measured using optimum ink formulations in 0.1 M perchloric
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Fig. 2. ECA (m?® g ') values plotted as a function of isopropanol content for differ-
ent ink compositions (Pt/C +water + isopropanol). The inks were used to prepare
TF-RDEs and ECA measured in 0.5 M H;50,. The ECA shows a pronounced peak in
magnitude for about 35% IPA composition for the Pt/C-HT and Pt-alloy/C whereas
the peak is rather shallow for the Pt/C baseline catalyst. All inks had identical ultra-
sonication times of 30 min.

acid at 25°C. The PtCofC shows a lower ECA, a significantly higher specific activity
(1.8x) compared to the baseline Pt/C and a slight enhancement of mass activity.

Takahashi, lkuma, and Shyam S. Kocha. "Examination of the activity and durability of PEMFC catalysts in liquid

electrolytes.” Journal of Power Sources 195, no. 19 (2010): 6312-6322.



ECA: Impact of Ink Formulation

H 2 -1 2 -1
Pt ECA varies from 72m? g, to 105m* g, TKK Pt/C (HSC) catalyst
TEC-10E50E (50% Pt/C)

100

INK FORMULATION
. Water/IPA/Nafion (optimized)
: Water/Nafion film
: Water/Nafion film
: Water/Nafion film
: Water/Ethanol/Nafion
: Water/IPA/Nafion
: IPA/Nafion
: Water/IPA/Nafion
0 ] I I
1 2 3 4 5 6 7 8

1: Kocha et al., J. Power Sources 195 6312-6322 (2010).

2:Y. Shao-Horn et al., Electrochem Solid St, 14 (10) B110-B113 (2011).
3: Arenz et al., J. Am. Chem. Soc., 133, 17428-17433, (2011).

4:Y. Shao-Horn et al., J. Electrochem. Soc, 159 (2) B96-B103 (2012).
5: Morimoto et al., Electrochimica Acta, 72, 120-128, (2012).

6: Kocha et al., ECS Transaction 50 (2) 1475-1485 (2012).

7: Garzon et al., ECS Transaction 50 (2) 1693-1699 (2012).

8: Pollet et al., RSC Advances, 2, 8368-8374, (2012).
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Baseline Pt/C Activity Benchmarks in RDE

400
Il ECA (m?/g,) =i, (uAfcm2,) N (GM1) TKK 46 wt% Pt/HSC,
= 60°C, 20 mV/s, no iR comp
300 — — =
e === -y | (GM2)ETEK 20wk PV,
— — — \ — — 60°C, 20 mV/s, no iR comp
= _ — =\ = =\ |
200 E\ E\ =\ E\\ =\ (Nissan) TKK 46 wt% Pt/HSC,
= = = = — 30°C, 10 mV/s, no iR comp
=\ =\ =\ =\ =\ |
100 =\ =\ =\ =\ — (NRL) E-TEK 20 wt% Pt/V,
— — — — — 25°C, 20 mV/s, no iR comp
M\ -\ o
0 (NREL) TKK 46 wt% Pt/HSC,
GM1 GM2 Nissan NRL NREL 250C, 20 mV/s, iR comp

H. A. Gasteiger, S. S. Kocha, et al. , Appl. Catal. B-Environmental, 56, 9 (2005).
I. Takahashi et al., J. Power Sources, 195, 6312 (2010).

lonomer/Carbon Ratio ~ 0.5
Y. Garsany, et al., Anal. Chem., 82, 6321 (2012).

All above electrodes were formulated incorporating Nafion in inks. Comparable
results can be obtained at different labs for similar quality films.




Activity: Impact of Ink Formulation
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Parameters Affecting RDE Measurements

e Type of Solvent
e Water/Solvent/Nafion

e Ultrasonication type, time
and intensity

R Electrode

—Help disperse the catalyst
—Act as a binder for the catalyst film

e Surface Preparation: Polishing, cleaning
e Material: GC, Au, etc
e Film Quality and uniformity

Rotating/Stationary
Atmosphere: N,, air, other

Deposition &

Drying of Film
AN A[ladde e[l ¢ Gas Flow Rate
e Temperature

Nafion function is primarily a binder in RDE electrodes and is not
essential for H* conduction since the acid electrolyte provides protons.
can it be eliminated?




Nafion-free Ink Formulation— Pt/HSC

4
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2012, 50.

Wide distribution of activity values observed. Gaussian
(Normal) distribution applied to obtain fits to the data.



Pt/HSC: Naflon-based vs. Nafion-free
vs. Nafion-free + Surfactant

p =387
10 o= =*112

++ 8 _
-~ —Pt/HSC + Nafion
> 6 |
c —Pt/HSC Nafion-free +
g Surfactant
S 4 —Pt/HSC Nafion-free,
Lt Surfactant-free

2

0

50 150 250 350 450 550 650 750 ocha s s, etal,

"Influence of Nafion on the

SpeCifiC ACtiV|ty, is (l-l-Alcmzpt) Electrochemical Activity of

Pt-based Electrocatalysts."
ECS Trans. 2012, 50.

Statistically significant increase in activity for Nafion-free vs.
Nafion-based Pt/HSC electrocatalyst.



Summary of Results—Pt/HSC & Pt/Vulcan

1000
II'ECA (M?/gpy) —
800 = Specific Activity (RA/CM?5) s %
N Mass Activity (mA/mgp,) o %

600 - =N
=\ — —
400 1.8X g\ = g
— — w —
—— AN — = —
200  —\  — = =
Y =R = =
0

Pt/HSC + Pt/HSC Pt/V + Pt/V
Nafion Nafion-free Nafion Nafion-free

1.8x higher activity observed for Nafion-free Pt/C over Nafion based Pt/C.

Kocha, S. S., et al., "Influence of Nafion on the Electrochemical Activity of Pt-based Electrocatalysts.” ECS Trans. 2012, 50.



Hypothesis: Pt|C|Nafion|Acid Electrolyte Interface

HClO,

Thick film Patchy film No ionomer

Kocha, S. S., et al., "Influence of Nafion on the Electrochemical Activity of Pt-based Electrocatalysts.”" ECS Trans. 2012, 50.



SEM Micrographs: Elemental AnaIyS|s
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Kocha, S. S., et al., "Influence of Nafion on the Electrochemical Activity of Pt-based Electrocatalysts.”" ECS Trans. 2012, 50.



Mass Transport:

Vs and Tafels
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Kocha, S. S., et al., "Influence of Nafion on the
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ECS Trans. 2012, 50.
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Effect of Pt Loading (catalyst layer thickness)

1000
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Specific activity decreases with loading and thickness due to
poorer O, diffusion.



Anion Adsorption

4
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5 due to SO, adsorption
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Kocha, S. S., et al., "Influence of Nafion on the E (V vs. RH E)

Electrochemical Activity of Pt-based Electrocatalysts."

ECS Trans. 2012, 50. Effect of Sulfonate Adsorption



Implications for ‘Particle Size Effects’

10000 |
O GM
Poly-Pt * ANL
® This paper w Nafion
i\ 4 This paper Nafion-free
T~ PUV
1000 .

Pt/HSC

Pt Black K. J. J. Mayrhofer, et

al., Electrochim. Acta,
53, 3181 (2008).

Specific Activity (pA/cm?y)

H. A. Gasteiger, S. S.
100 Kocha, et al. Appl.

0 30 60 90 120 150 Catal. B-Environmental,

56, 9 (2005).

Electrochemical Area (m?/gp,)

‘Particle size effect’ on specific activity (Pt/C in HCIO,) is
suppressed in the absence of Nafion in electrodes.

Kocha, S. S., et al., "Influence of Nafion on the Electrochemical Activity of Pt-based Electrocatalysts.”" ECS Trans. 2012, 50.



Existing Pt/C Benchmarks: RDE-MEA
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Benchmarks for ECA and Activity of Pt/HSC in RDE and PEMFC MEAs.

Kocha, S. S., etal., ."

ECS Trans. 2012, 50.



Durability Measurements
iIn RDE



Considerations for RDE Durability Measurements

Loss of electrochemically-active surface area (ECA) and ORR activity

= ECAIloss and patrticle size increases caused by:

— Preferential dissolution preferentially
of small particles <3.5 nm

— Re-deposition onto larger particles

Images courtesy of Paulo

— Re-deposition between particles to coalesce particles Ferreira, UTexas-Austin
— Corrosion of support with loss of electronic contact or particle
coalescence

= Extent of ECA loss and evolution of PSD will depend on the
extent of contributions from these four mechanisms

= Extent of dissolution and re-deposition and corrosion of support
will depend on:
— Upper and lower potential limits of cycling, profile, and scan rate
— Transport of dissolved Pt away from electrode (e.g., by rotation)
— ECA to solution volume ratio
— Temperature



Factors Affecting RDE Durability Measurements

= Cycling in 0.57 M HCIO, and 0.5 M H,SO,

results in similar loss of ECA

= ECAloss increases with increasing
temperature

= Considerable change in PSD and particle

surface area can occur during “conditioning”
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ECA loss and dissolved Pt concentration

Data in two upper plots courtesy of Y. Morimoto: T. Nagai, M. Murata, and Y. Morimoto, Honolulu PRIME 2012, The
Electrochemical Society, Oct. 2012, Abstract No. 1320
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Durability Protocols for PGM Catalysts and Supports

Catalyst Protocol Support Protocol
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-Summary

RDE techniques are suitable for evaluating/screening the ECA and
electrochemical activity and durability of small quantities of novel
electrocatalysts for PEMFCs.

A number of factors influence the measured activity including:
—Measurement protocol used for testing

—Operating conditions

—Ink formulation

—Film deposition

Further work needs to be done in combining the best practices and to
approach the “true activity” of electrocatalysts.

In the interest of being able to easily compare results found in the

literature, it would be helpful if a standard test protocol (example: slide
10) is established.
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