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RFC System Challenges

Existing state of the art regenerative fuel cell systems require two separate stacks 
and significant auxiliary support hardware

Regenerative Fuel Cell System at NASA 
Glenn Research Center (above)
Regenerative Fuel Cell System for High-
Altitude Airships at Giner (left)
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Fuel Cell vs. Electrolyzer: Stack Comparison
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Issues Motivating WaMM Development

– Unitized Regenerative Fuel Cell:
• Could save volume/weight of extra stack, however, water 

management becomes difficult. 
– Fuel Cell Mode:

• Almost impossible to avoid liquid water flooding the cathode in 
pressurized systems operating at low stoich.

• Systems must operate at lower pressure/high recirculation rates to 
remove water.

– Complicated in low gravity
– Parasitic Efficiency Loss

– Electrolyzer Mode:
• The same features required in a fuel cell to evacuate product water 

will also stop feed water from reaching the electrode during 
electrolysis

– Solution: keep water in the vapor phase
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Single Cell Operation
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System Implications
• Vapor fed electrolyzer produces >99.9% dry product gases: no liquid gas phase separators 

required
• Electrolyzer feed water can be static feed for further system simplification: no liquid 

recirculation pumps required
• Fuel cell feed gases can be static feed: no gas recirculation pumps required
• Fuel cell is humidified in situ by product water: no external humidifiers required
• Because water permeable plate is relatively insusceptible to impurities in feed water, water 

purity constraints can be relaxed: no deionization beds required

Traditional RFC System WaMM-Based URFC System
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URFC: Electrolyzer Performance   
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URFC: Fuel Cell Testing
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Single Cycle
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•Because system is vapor based, it can 
change modes very quickly
•Turn around time around 5 seconds



April 2011 11

Outline

1. Regenerative Fuel Cells at Giner
2. Regenerative Systems for Energy Storage

1. Economics
2. Electrolyzer Optimization
3. Fuel Cell Optimization 
4. What to do with O2? 
5. High Pressure Electrolysis vs. External Pumping

3. The Three Questions



April 2011 12

Cost of Electrolysis is Becoming 
Competitive

Table 1
COSTS OF HYDROGEN FROM PEM 

ELECTROLYSIS
Based on US Department of  Energy’s H2A Model

Item Cost $/kg

Capital Cost $0.79

Fixed O&M $0.49

Power Cost ($0.039/kWh) $1.95

Other Variable Costs (utilities etc.) $0.01

High Pressure Storage (pumps and tanks) $1.80

Total Cost $5.04

Miles travelled kg H2/gallon of  gasoline 50/30

Total Cost in gallons of  gasoline 
equivalent

$3.02
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Regenerative Systems Can Make Renewables More Competitive
…But Efficiency is Extremely Important

100 MW Installed Wind, 33 MW Electrolyzer, 
22,500 kg Storage, 25 MW Fuel Cell Windmill Only

Windmill with 50%
Efficient

Regenerative
System

Windmill with 40%
Efficient 

Regenerative 
System

Windmill Cost ($1000/kW 20 Year Amortization at 
5%) $       8,024 $     8,024 $  8,024

Annual Storage H2 Cost (20 Year Amortization) $               - $        181 $     181

Annual Electrolyzer and Fuel Cell System Cost 
($500 kW electrolyzer, $500/kW fuel cell) (20 Year 
Amortization)

$               - $     2,648 $  2,648

Annual Operating, Maintenance, Refurbishment
$1.5 MM $       2,000 $     2,705 $  2,705

Annual Off-Peak Power Yield  (GW)
- 307 205 205

Annual On-Demand Power Yield (50% Efficiency)
- 0 50.6 40.5

Annual Value of “Off-Peak” Power @ 3.0¢/kWh $      10,731 $     7,190 $  7,190

Annual Value of “Peak” Power @ 15¢/kWh $                - $     7,588 $  6,071

Annual Profit $           707 $     1,220 $   (297)

Follows analysis by Dunn and Shimko 2010 DOE Merit Review
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…Don’t Just Take our Word for it…

Kevin Harrison 2010 DOE Merit Review, 
http://www.hydrogen.energy.gov/pdfs/review10/pd031_harrison_2010_o_web.pdf  
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By Increasing Efficiency and Lowering Part Counts 
Electrolysis Cost has Been Dramatically Lowered
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Optimizing Performance For Electrolyzers

Similar to fuel cells, the 
majority of  efficiency losses are 
due to slow oxygen kinetics and 
membrane resistance

For cell operating at 1000 psi and 
80°C with Nafion 117
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Improvements in Lowering Permeability can 
Greatly Improve Operating Efficiency

Using Current PFSA’s Thick Membranes is Required for High Pressure Operation

Operation at 80°C and 1000 psi
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Membranes and Catalysts that can Tolerate High 
Temperatures Can Greatly Improve Efficiency
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Due to Crossover, Fuel Cells Generally do not 
Benefit From “Nerstian Boost” of High Pressure

Effect of Pressure on Cell Efficiency 
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If Operating on Air, Fuel Cells Need a Thin Membrane

With current PFSA membranes it is not possible to operate high pressure electrolysis with a thin membrane
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With Focus on Efficiency it is Difficult 
to Operate with Air
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Increasing Electrolyzer Pressure Leads to System 
Simplification but not Necessarily Lower Cost
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The Three Questions

1. Is this technology feasible for cost effective storage of renewable electricity? 
– Dependent on scale and duty cycle.  

• Fuel cell and electrolyzer duty cycle need to be closely matched 
• For air operating it is difficult to match fuel cell and electrolyzer membranes

2. What are the materials and systems barriers to developing this technology? 
– Membranes with lower gas permeability
– Lower Cost Catalysts

3. What are the manufacturing issues that need to be addressed to be cost effective?
– Continuing to lower part count and component cost

Efficiency is still key for cost competitiveness.
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