

Progress on the Development of Reversible SOFC Stack Technology

Presented by: Casey Brown 19 April 2011

Versa Power Systems

- Versa Power Systems is a developer of planar solid oxide fuel cells (SOFCs)
- Privately held company headquartered in Littleton, Colorado, United States
- SOFC development facility in Calgary, Alberta, Canada
- Activities in both stationary and mobile SOFC development

VPS Planar SOFC Cell and Stack

- Anode supported cells
- Operating temperature range of 650 C to 800°C
- Ferritic stainless steel sheet interconnect
- Cross-flow gas delivery
- Stack can be integrated into stack towers for various power applications

Tape Casting

Copyright © 2011 Versa Power Systems - All Rights Reserved

Screen Printing

Copyright © 2011 Versa Power Systems - All Rights Reserved

High Temperature Co-firing

Copyright © 2011 Versa Power Systems - All Rights Reserved

TSC Cell Microstructure

VPS Processes

- The established processes proved flexible enough to allow more than 8X increase in cell active area (121 → 1000 cm²) without appreciable change in performance or yield
- 25 x 25 cm² cells (550 cm² active area) are being used for SECA stack development

Copyright © 2011 Versa Power Systems - All Rights Reserved

VPS Activity Areas

US DOE Fossil Energy SECA

Development and supply of SOFC technology for operation on gasified coal

- Scale-up and R&D of SOFC for Coal-Based SOFC systems
- Large area cells and high kW stacks

Boeing // DARPA

Vulture II: 5 year autonomous aircraft

- Development and delivery of high efficiency energy storage system
- High specific power
- Low degradation

US DOE EERE

Advanced Materials for RSOFC Dual Mode Operation with Low Degradation

- Reversible SOFC materials development and demonstration
- kW stack demonstration

INL

Solid Oxide Electrolysis 1-kW Stack Testing to Investigate Degradation

- Demonstration of 1 kW electrolysis stack
- VTT (Finnish National Laboratory)

Demonstration of 10 kW Natural Gas fired system

Supply of 10 kW Solid Oxide module for integration and testing with balance of plant

U.S. DOE SECA Project

VPS participates in the U.S. Department of Energy's SECA program with a goal of developing large-scale SOFC power systems (project prime is FuelCell Energy)

Stack **Tower**

10-20 kW Stack

1 kW Stack

- VPS responsible for core cell & stack technology
- 25 x 25 cm² cell and 20 kW (96-cell) stack block has been sélected as the development platform

Cell Scale-Up Status

While not directly interested in electrolysis, the SECA program has enabled VPS to demonstrate scale up, performance and degradation improvements that could be applicable to electrolysis and energy storage systems.

10 kW SOFC Demo Unit

VPS has collaborated with VTT Technical Research Centre of Finland to produce a 10 kW fully integrated SOFC system

- VTT scope: system design & BoP-module
 - BoP-components: Heat exchangers, catalytic burner, reformer, recycle loop ...
 - System control
- VPS scope: stack module
 - 10 kW class SOFC stack
 - Stack and module instrumentation
 - Assembled insulated vessel

Status:

Modules integrated, operating, and meeting targets

10 kW System Demo Unit at VTT

VTT 10kW-2, System Test, Stack: GT057382-0005 Period Degradation, Hours: 589 - 1532 (943 h period duration)

Boeing / DARPA Vulture II

General Characteristics

Wingspan: 435 ft

Altitude: 65000 ft

Motors: solar/electric

• Endurance: 5 years

Demonstrator first flight: 2014

- This is an aircraft program, not a fuel cell program. Reversible SOFC identified by Boeing as the best technology fit.
- VPS to deliver high efficiency, light weight, energy storage system

Single cell testing allows controlled evaluation of new materials sets, and comparison to past results

Single Cell Testing at VPS

Single cell jigs incorporate stainless steel contact, sealing and flow arrangement representative of a stack

Degradation results include any jig degradation

Degradation Improvements

- 15 cell materials systems developed and tested since start of interest in electrolysis (~2008)
- 11 of these have been tested in excess of 1000 hours steady state electrolysis
- Summary of steady state results in table below
- Focus is now shifting to cyclic operation (FC/EL)

	ELECTROLYSIS (SOEC)			
	Degradation		Test time (hours)	
Cell Type	mV/1000 hrs	%/1000hrs	rest time (nours)	Test No.
TARGET	< 50	< 4	1000	TARGET
TSC-2	91	7.3	2893	GLOB 101670
EC-1	27	2.2	8465	GLOB 101695
EC-2	~0	~0	2400	GLOB 101706
EC-3	72	5.8	1792	GLOB 101728
RSOFC-1	35	2.8	8746	GLOB 101737
RSOFC-2	120	9.6	1152	GLOB 101738
RSOFC-3	42	3.4	2653	GLOB 101741
RSOFC-4	24	1.9	3618	GLOB 101744
MAC-RSOFC-5	51	4.1	1059	GLOB 101758
RSOFC-6	31	2.5	689	GLOB 101779
RSOFC-7	18	1.4	1071	GLOB 101780
RSOFC-8	24	1.9	498	GLOB 101782
RSOFC-9	25	2.0	1002	GLOB 101784

Some Electrolysis Holds

RSOFC Cell Development

Performance Curves Glob 101782

Stack Testing

In-stack testing demonstrates repeatability and stability of materials system in less controlled conditions than single cell

Stack Degradation (FC)

Fuel Cell Mode Degradation: ~3.5 mV/khr

Better than 0.770 V/cell after 2 years Projects to better than 0.7 V/cell at 4 years

Early Stack Degradation (EL)

Stack Degradation (EL)

Early TSC2 Cyclic Testing

Compare to 91 mV/khr steady state EL degradation for material system

- -> Cyclic operation does not appear to be driving degradation
- -> EL degradation is showing up on FC portion of cycle

Ongoing Single Cell Test

Improved materials system delivering better than 10x improvement in cyclic impact on FC voltage Uncertainty in real EL impact, more test time needed

Efficiency Review

Reversible SOFC VI characteristics (Notional)

Round trip (storage) efficiency = V_1/V_2 (e.g.: 0.900/1.560 = 58%) Maximizing efficiency requires focus on system heat loss (EL), fuel cell performance and system parasitics (FC)

Degradation tolerance EL: $(V_2 - V_3)/dV$ e.g.: (1.560 - 1.100)/20 = 23 khrs (2.6 years)

Challenge Areas

- Compared to fuel cell history, VPS has relatively little EL experience
- Despite significant improvements, degradation remains higher in electrolysis than fuel cell
- Energy storage efficiency is strongly influenced by system design

- 1. Is this technology feasible for cost effective storage of renewable electricity?
 - A qualified 'yes'
- 2. What are the materials and systems barriers to developing this technology?
 - Materials: Experience and confidence are lacking, but if demonstrated cell performance is stable and scalable, we already have 1+ year solutions.
 Degradation improvements always welcome
 - System: Need to understand real requirements, things like power profiles of different applications, in order to answer this. It would be nice to see demonstration systems running.
 - System: Low cost, high storage efficiency systems designs, that take advantage of SOFC potential.
- 3. What are the manufacturing issues that need to be addressed to be cost effective?
 - Solid oxide fuel cell: Build on SECA work, volume
 - System: ?

Acknowledgements

Thank you to the following funding agencies:

- US DOE Solid State Energy Conversion Alliance
- US DOE Office of Energy Efficiency and Renewable Energy Laboratory
 - FuelCell Energy (project prime)
- US DOE Idaho National Laboratory
- The Boeing Company (DARPA funded program)
- VTT Technical Research Centre of Finland
- Versa Power Systems internally funded R&D efforts

Thank you to the Versa Power Systems team

Extra slides

Longer Stack Data

GT056019-0150 TC1 Hold - 23/Jun/10 28cell PCI; Test Stand 1

Constant V vs I

GT056019-0150 TC1 Hold - 23/Jun/10 28cell PCI; Test Stand 1

Electrolysis Temperatures

28-cell PCI SOEC, 39.5slpm fuel (0.5H2/0.5H2O), 35slpmair Contours of Static Temperature (c) 47A output: 30.5 V

VPS Jul 06, 2010 FLUENT 6.3 (3d, dp, pbns, spe, lam)

10 kW SOFC Demo Unit Layout

- Modular design
- Natural gas fuelled
- Warm anode recycle loop
- Air by-pass to regulate stack and afterburner temperature
- Grid connected
- Thermally selfsustained

Cyclic Testing in Stack

GT055296-0100 TC1 hold - 10/Mar/10 6 Cell PCI - TSC3 cells ; Test stand 1

In stack, steady EL degradation again dominates

-> Results led to concerted focus on understanding and improving steady state degradation