

Outline

 Background on Arkema's polyvinylidene fluoride (PVDF) blend membrane technology

Overview of membrane properties and performance

Summary

Membrane Technology

Polymer Blend

- Kynar® PVDF $\left\{ -CH_2 CF_2 \right\}$
 - Chemical and electrochemical stability
 - Mechanical strength
 - Excellent barrier against methanol
- Polyelectrolyte
 - H⁺ conduction and water uptake

- PVDF can be compatibilized with a number of polyelectrolytes
- Process has been scaled to a pilot line

Property Control

- Morphology: 10-100s nm domains
- Composition can be tailored to minimize methanol permeation, while optimizing conductivity and mechanical properties

Morphology Control

Increasing degree of compatibilization

 σ = 90 mS/cm

 σ = 140 mS/cm

- Compatibilization
 - Polyelectrolyte and PVDF phase separate without compatibilization.
 - Compatibilizing agent allows for a tunable degree of mixing.
- Conductivity increases as the morphology becomes finer.
- The blending technology has been successfully used to incorporate more than 10 different families of polyelectrolytes into PVDF.

Membrane Development

- Under a grant from the Department of Energy (DE-EE0000474), Arkema has been developing DMFC membranes using this blending technology.
 - One project goal is to develop membranes with optimized conductivity and methanol barrier properties for direct methanol fuel cells.
- Variables studied:
 - Polyelectrolyte composition, loading, and microstructure
 - Crosslinking chemistry
 - PVDF grade
 - Incorporation of an inorganic phase to produce a membrane composite (in collaboration with Vijay Ramani at IIT)
 - Membrane processing parameters (casting temperature, thickness, type of substrate)

Membrane Properties from Two Polyelectrolyte Candidates

- PE 1 and 2 have the same selectivity, but PE2 achieves similar results to PE at lower loadings.
- Selectivity of the membranes is 3x better than 7mil PFSAs.

Water Transport Properties

- Arkema membrane has a lower EOD coefficient and lower water permeability.
- A lower EOD coefficient is advantageous for DMFC applications.
 - Less cathode flooding and easier water management.
 - Reduced methanol crossover

MEA Performance

- In low concentration (≤ 3M) methanol operation, performance is largely determined by MEA resistance. Arkema membrane performance is between 2 and 7mil PFSA.
- At high methanol concentrations (>5M), the Arkema membranes outperform PFSA, due to significantly lower methanol crossover.

MEA Performance – Electrode/Membrane Interface

- Arkema membrane shows good compatibility to electrodes with standard PFSA ionomer binder.
- Electrode/membrane interfacial resistance is slightly higher for PVDF blends.
- Good adhesion between membrane and catalyst layers due to the partially fluorinated PVDF matrix.

MEA Performance – Arkema Membrane Durability Testing

- Most membranes failed between 500-1000hr range due to performance loss (> 20%).
 - Most performance losses came from the electrodes, but higher areal and resistance and lower methanol crossover developed over time.
- Arkema membranes with a higher IEC and PFSAs lasted longer in durability test.
 - Research is underway to understand the root causes.

Summary and Future Work

- The PVDF membrane platform is very versatile
 - A variety of polyelectrolytes can be blended with PVDF.
 - The membrane composition can be easily tailored to deliver customized properties.
 - Technology has been scaled up to produce pilot quantities of membrane.
- Arkema membranes exhibit many of the properties required for DMFCs:
 - Excellent methanol barrier properties allows the membranes to be used with higher methanol concentrations than PFSAs.
 - Good conductivity and mechanical strength.

Future Work

- Continue durability testing (including post mortem analysis).
- Development of a second membrane generation with better properties than the first generation.