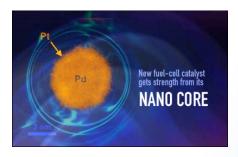
Platinum Monolayer Electrocatalysts for Oxygen Reduction Reaction

Radoslav Adzic

Co-workers: Jia Wang, Miomir Vukmirovic, Kotaro Sasaki, Stoyan Bliznakov, Yun Cai, Yu Zhang, Kurian Kuttiyiel, Kuanping Gong, YongMan Choi, Ping Liu, Hideo Naohara¹

Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973

¹Toyota Motor Corporation, Susono, Japan


Webinar June 19, 2012

a passion for discovery

Outline

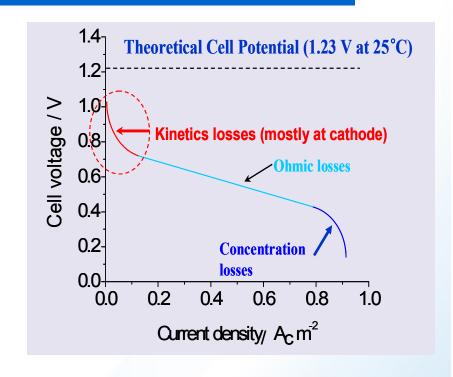
- Introduction on fuel cells, electrocatalysis, existing developments and remaining obstacles to commercialization
- Platinum monolayer electrocatalysts, the main properties, synthesis, factor affecting the activity and stability- core – shell interactions.
- Tuning the activity and stability by core-shell interactions Several illustrations: Nanowires, Tetrahedral nanoparticles, Hollow Pd nanoparticles, Alloys as cores
- Fuel cell tests, long-term stability, self healing effects
- Conclusions
- Acknowledgements

Fuel Cells for Sustainable Energy Future

Fuel cells, an electrochemical power source that converts directly chemical energy of fuel into electrical energy, have several outstanding properties:

- High efficiency (theoretical, close to 100%, practical 50-60%)
- High power density
- Ideal for automotive application

Main Reactions of Electrochemical Energy Conversion


Cathode: O ₂ reduction reaction (ORR)	(slow)
$O_2 + 4H^+ + 4e \rightarrow 2H_2O$	$E^{\circ} = 1.23V$
Anode: H ₂ oxidation (HOR)	(fast)
$H_2 \rightarrow 2H^+ + 2e^-$	$\mathbf{E}^{\circ} = \mathbf{0.0V}$
Anode: Methanol oxidation (MOR)	(slow, CO strongly ads.)
$CH_3OH + H_2O \rightarrow CO_2 + 6H^+ + 6e^-$	$\mathbf{E}^{\circ} = \mathbf{0.016V}$
Anode: Ethanol oxidation (EOR)	(slow, partial oxidation)
$C_2H_5OH + 3H_2O \rightarrow 2CO_2 + 12H^+ + 12e^-$	$\mathbf{E}^{\circ} = \mathbf{0.084V}$

Fuel Cells for Sustainable Energy Future

Proton exchange membrane fuel cell (PEMFC)

With high efficiency and clean operation (H₂O is the reaction product), fuel cells will prolong the availability of fossil fuels and improve quality of the environment.

Obstacles caused by slow ORR kinetics:

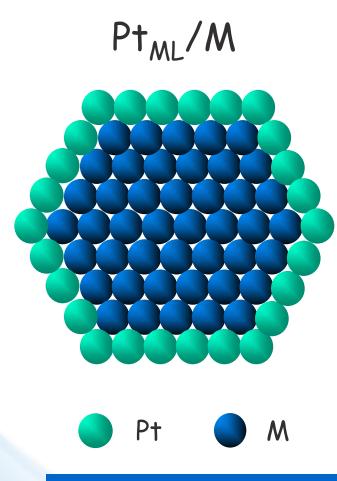
- 1. Efficiency below theoretical, even for Pt, the best catalyst
- 2. High Pt content in cathode; in addition to
- Insufficient stability of Pt

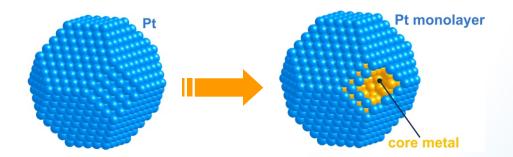
Fuel Cells for Sustainable Energy Future

The last two decades brought considerable advances in Fuel Cell Electrocatalysts by:

i) increasing activity ii) decreasing loadings and iii) increasing their stability

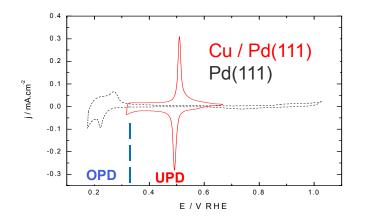
Some improvements are, however, needed to remove the remaining obstacles to their commercialization.


Several promising current approaches to address these problems include:

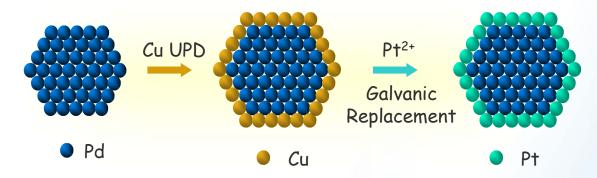

- 1. Segregated alloys (Markovic, Stamenkovic)
- 2. Nanostructured Pt films (Debe, Atanasoski)
- 3. Non-noble metal complexes (Zelenay)
- 4. Heat-treated macrocyclics (Dodelet)

Our approach: Platinum Monolayer Electrocatalysts

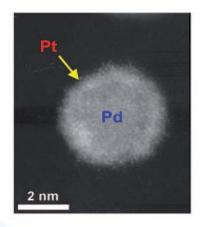
Pt Monolayer Electrocatalysts

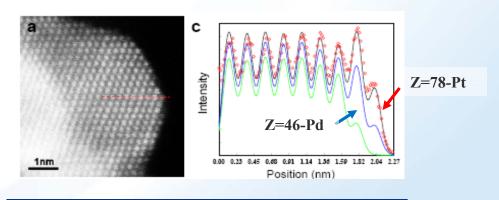

For ~5 nm Pt nanoparticles (NPs), ~25% of atoms are on the surface

- Ultra-low Pt content
- High utilization of Pt
- □ Tunable activity via strain and/or electronic effects from the interaction between Pt_{ML} and substrates


This electrocatalyst is commercially available from N.E. ChemCat Co., based on four patents licensed by BNL to NE CC

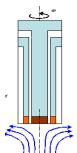
6


Structure-controlled syntheses of Pt Monolayer Electrocatalysts



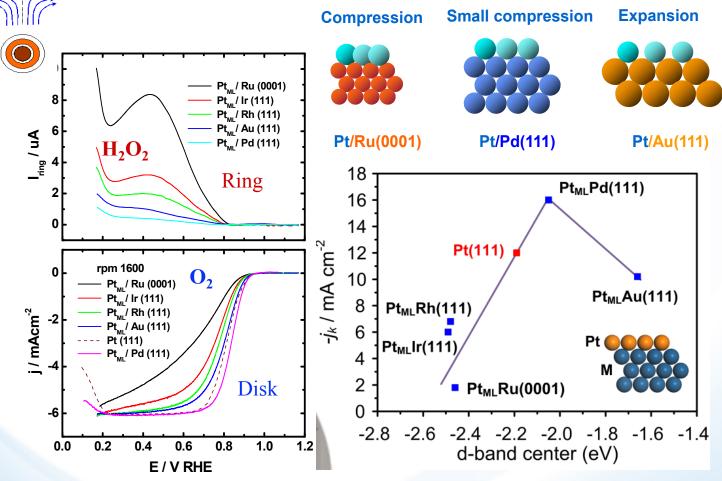
Brankovic et al. Surf. Sci., 477, L173 (2001)

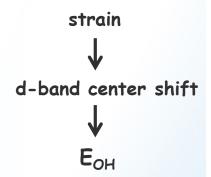
Galvanic displacement of Cu ML deposited at underpotentials (UPD) - a ML-limited process)



STEM, EELS evidence of a Pt ML shell

Adzic, Zhang, Sasaki, Vukmirovic, Shao, Wang, Nilekar, Mavrikakis, Valerio, Uribe, Top. Catal. 46 (2007), 249

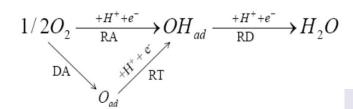

Brookhaven Science Associates



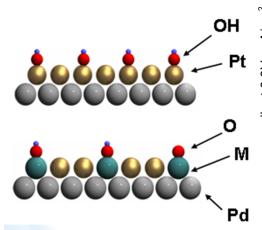
Factors affecting Pt_{ML}ORR Activity

Core-induced surface strain

Trends in surface reactivity can be described by the position of d-band center (εd)

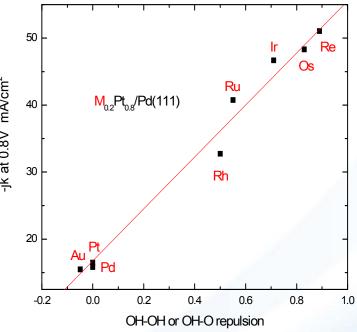

Small contraction of a Pt lattice (decreased reactivity) makes it more active for the ORR.

Adzic, Zhang, Sasaki, Vukmirovic, Shao, Wang, Nilekar, Mavrikakis, Valerio, Uribe, Top. Catal. 46 (2007), 249 Zhang, Vukmirovic, Xu, Mavrikakis, Adzic, Angew. Chem. Int. Ed. 44 (2005), 2132



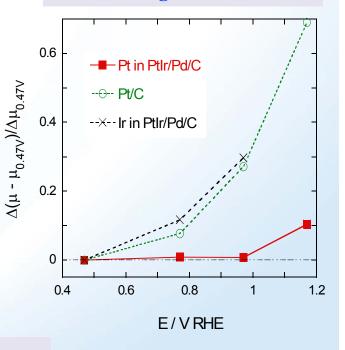
Decreasing the OH_{ads} at Pt ML electrocatalysts

The concept of the OH -OH repulsion

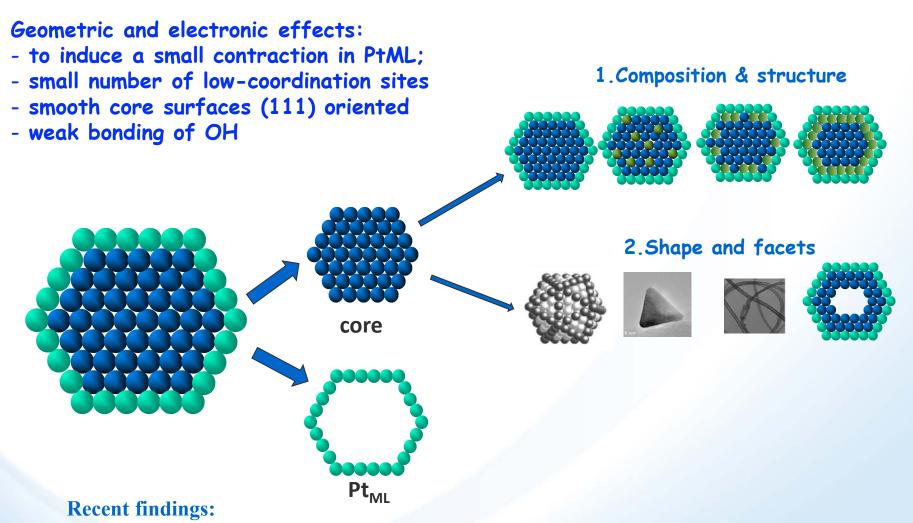


Sketch of the OH-OH or OH – O repulsion

J. Am. Chem. Soc. Comm. 127 (2005) 12481


OH-OH, or OH-O repulsion from DFT

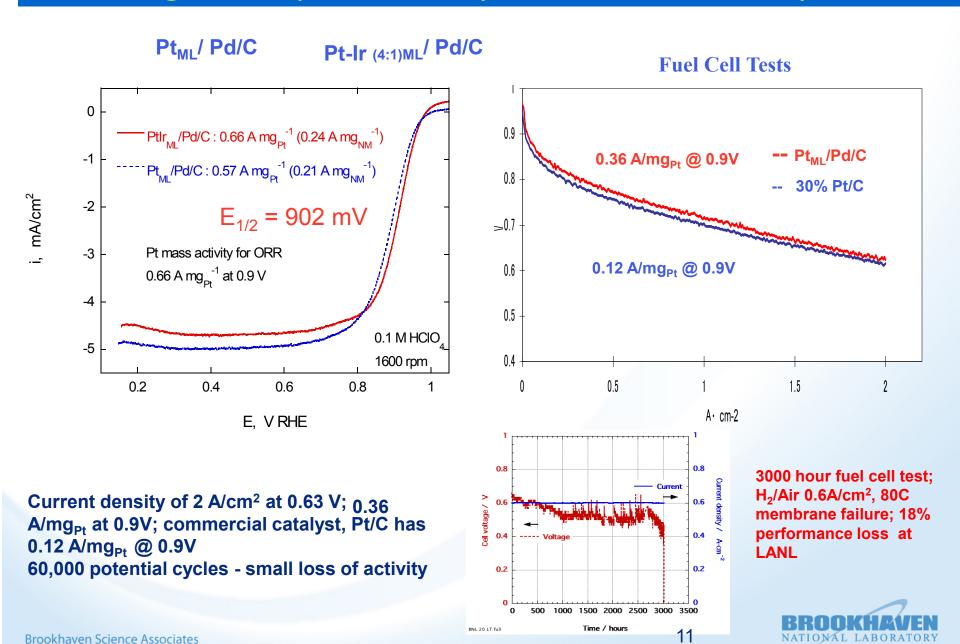
Activity vs. OH-OH, or OH-O repulsion for Pt-M mixed-monolayer ($Pt_{0.2}$ - $M_{0.8}$).


A consensus: High OH_{ads} coverage from H₂O reduces the ORR rate : **Tarasevich 1977**, **Adzic 1989**, **Gottesfeld 1989**

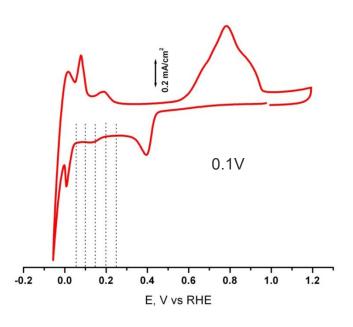
XANES evidence that Pt is stabilized against oxidation

BROOKHAVEN NATIONAL LABORATORY

Tuning the activity of Pt_{ML} electrocatalysts by core - shell interaction

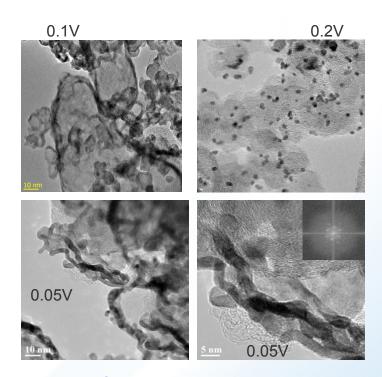


- Particle size-induced surface contraction of a top ML (affects the BE₀; facet dependent)
- Coordination-dependent surface atomic contraction



10

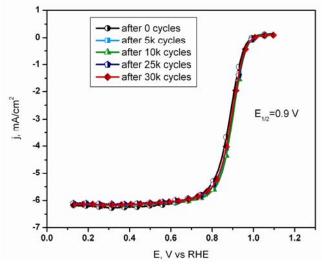
High Activity and Stability of Pt ML Electrocatalysts


Nanowires and nanorods as support Electrodeposition of Pd nanowires and nanorods on carbon

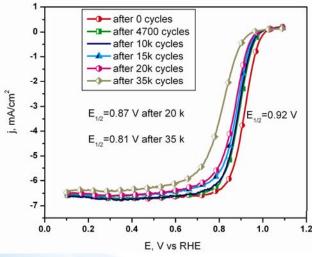
Deposition of Pd on carbon surfaces in 0.1M HClO₄with 1mM Pd²⁺.

The growth mechanism: H_{upd} in Pd acts as reducing promotor at terraces, while chlorides adsorb at low-coordination sites and block growth in that direction.

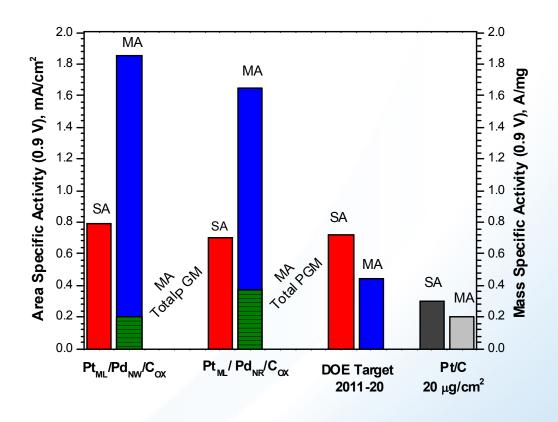
Nanowires have smoother surface, less low-coordination sites, edges, more (111) facets.



FFT of the TEM image showing (111) pattern of Pd(111)

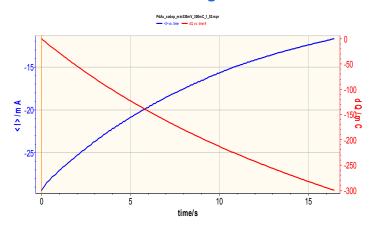

The type of deposit: NPs, NWs or NRs, depend on the potential and Pd ion concentration

Scale-up is simple: Cell for 25 cm² electrode was constructed.

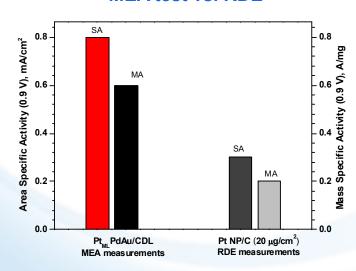

Polarization ORR curves measured on Pt_{ML}Pd_{NW}/C and Pt_{ML}Pd_{NR}/C

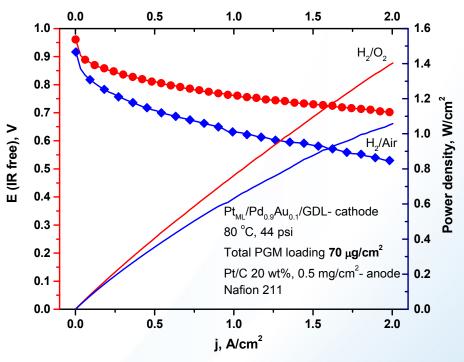
Polarization ORR curves measured on Pt_{ML}Pd_{NW}/C

Polarization ORR curves measured on Pt_{MI} Pd_{NR}/C



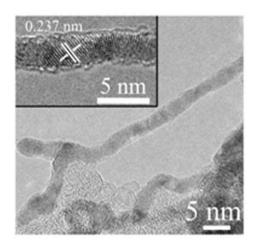
Comparison of the mass and specific activities

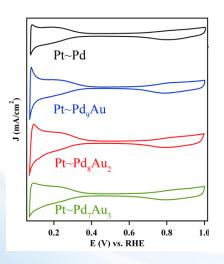


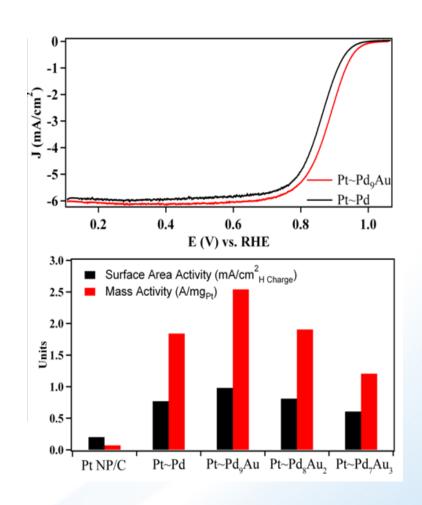

Electrochemical deposition of PdAu NRs, Pt_{ML}/Pd_{0.9}Au_{0.1}/GDL

Current and charge transients

MEA test vs. RDE



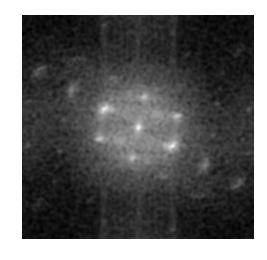

PGM content approx. 70µg/cm²

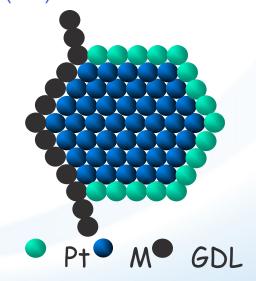

Electrochemical deposition of NRDs and NWs cores with Pt_{ML} deposition using galvanic displacement of Cu ML facilitates close to 100% utilization of Pt.

Synthesis of the ultrathin bimetallic PdAu nanowires

Pd and Au precursors are combined with octadecylamine and a phase transfer catalyst in an organic solvent system.

The phase transfer catalyst dodecyltrimethyl ammonium bromide (DTAB) is used to allow for co-solubilization of NaBH₄ into both the aqueous and organic phases.


With Koenigsmann and Wong


Enhanced ORR kinetics on electrodeposited Pt / Pd nanowires

TEM image of toroidal particle formed by connecting wires' ends. 2.2 Å is the interplanar distance of Pd(111).

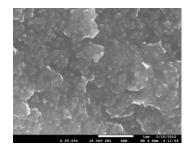
FFT of the TEM image left showing the (111) pattern of Pd(111).

A very high activity of Pt ML on Pd nanowires is due to:

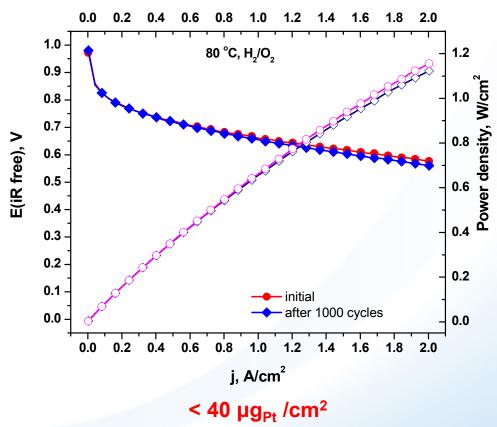
- 1. The dominant (111) pattern of Pd
- 2. Very high utilization of Pt

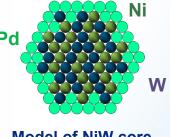
This result confirms the (111) facets of Pd are the best surface for the ORR.

Model for 100% utilization of Pt in Pt_{ML} catalysts with cores electrodeposited on GDL


Decreasing the content of Pd in cores Refractory metal alloys as cores - NiW

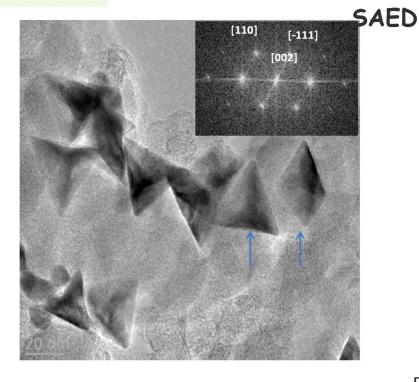
Pt_{ML}/Pd/NiW


NiW obtained by co-deposition of Ni and W on gas diffusion layer (GDL)


Ni is partially displaced by Pd from the top layer of NiW. Electrode: 5cm²

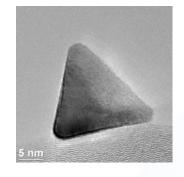
SEM image after NiW deposition on GDL.

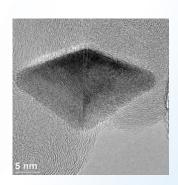
1:1 Ni:W ratio verified using EDS W max conc. 50%



Model of NiW core with a partially displaced Ni by Pd

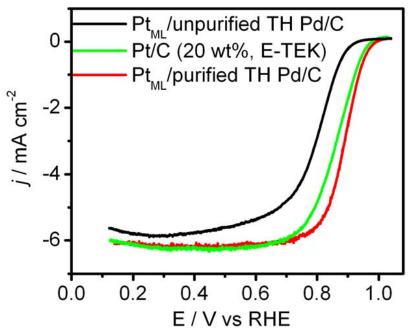
Concave Tetrahedral Pd Nanocrystals

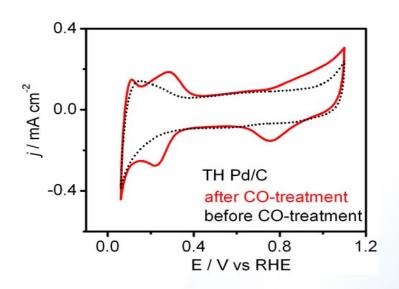

HRTEM


~ 30nm

Dominant (111) and (110) facets

tetrahedral

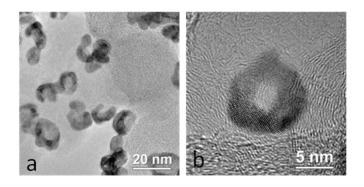

octahedral


Hydrothermal preparation

Pd(acac)₂ + Formaldehyde + PVP (Pd salt) (Capping (100)) (Surfactant)

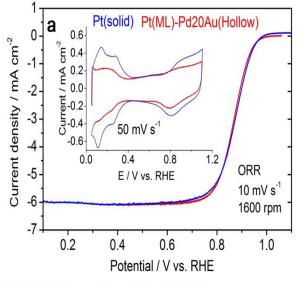
Surfactant: poly(vinyl pyrrolidone) (PVP)

Concave Tetrahedral Pd Nanocrystals

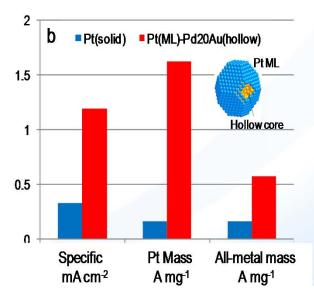


	Pt(111)	Pt _{ML} /TH Pd/C
Half-wave potential (V)	803	888
ECSA (m²/mg _{Pt})	205	15
Pt specific activity (mA/cm ² _{Pt}))	0.8	0.53
Pt mass activity (A/mg _{Pt})	1.6	0.82

J. Electroanal. Chem. (2011) In press


BROOKHAVEN NATIONAL LABORATORY

Pt monolayer on hollow Pd nanoparticles



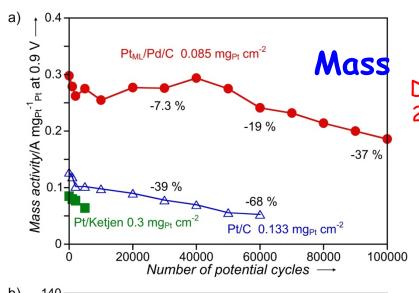
TEM images of Pt(ML)-Pd₂₀Au hollow particles fabricated using Ni nanoparticles as templates.

Core metals	SA [mA cm ⁻²]	Pt mass [A mg ⁻¹]	Pt+Pd+Au mass [A mg ⁻¹]
Pd ₂₀ Au	0.85	1.62	0.57
Pd solid	0.50	0.96	0.25
Pt solid	0.33	0.16	0.16

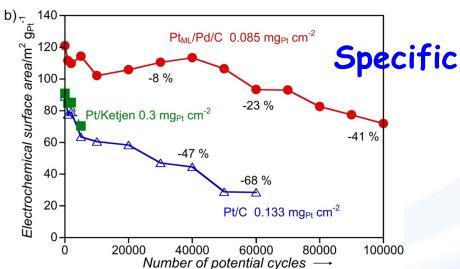
Brookhaven Science Associates

Zhang et al. Catalysis Today, htpp://dx.doi.org/10.1016/j.cattod.2012.03.040 High activity is due to smooth surface morphology, and hollow-induced lattice contraction.

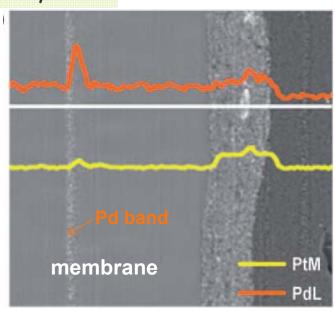
Scale-up synthesis is being developed using:

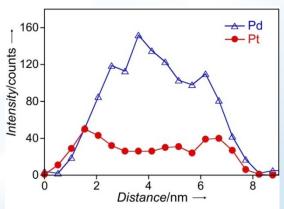

- 1. The cell for electrodeposition of Pd NWs
- 2. The microemulsion method.

BROOKHAVEN NATIONAL LABORATORY


20

Fuel Cell Stability Tests of Pt_{ML}/Pd/C

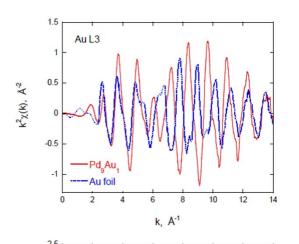

Stability after 100,000 potential cycles


DOE target 2015: <40% loss after 30,000 cycles

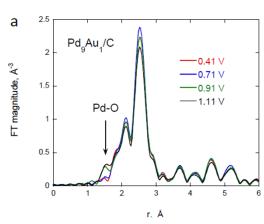
Brookhaven Science Associates
Angewandte Chemie International Edition, 49 (2010) 8602

SEM image and EELS line scan analysis

Stability: 30 s at 0.7 and 0.9 V


BROOKHAVEN NATIONAL LABORATORY

Pd₉Au/C nanoparticle cores for Pt monolayer


30% Pd/C

Pd-O

k, Å-1

Au-Au	2.771 Å
Au-Pd (= Pd-Au)	2.760 Å
Pd-Pd	2.756 Å

The fitting result indicates the Pd-Au (pseudo) solid-solution

Based on the inhibition effect of Au on Pt (Science, 315 2007, 220), we synthesized PdAu (9:1) nanoparticles for Pt ML cores.

2

1.5

0.5

FT magnitude, Å⁻³

Nature Chemistry, submitted Brookhaven Science Associates

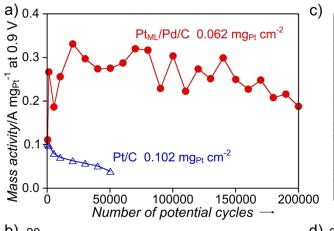
Pd K

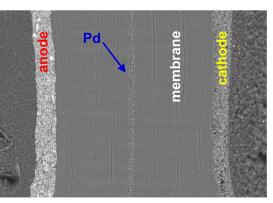
1.5

-0.5

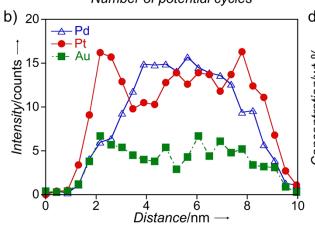
-1

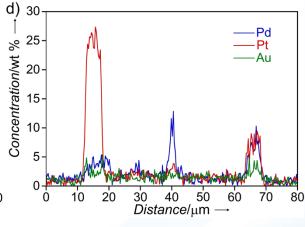
k²χ(k), Å-2


Significant retardation of Pd oxidation for Pd₉Au/C compared with Pd/C. 22


r, Â

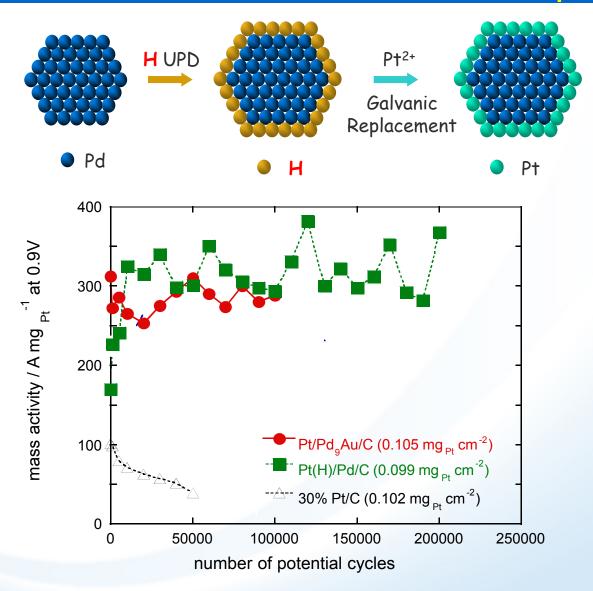
-1.11 V




Fuel cell test of Pt_{MI}/Pd₉Au/C electrocatalyst

Stability after 200,000 potential cycles

Core-protected core-shell electrocatalysts

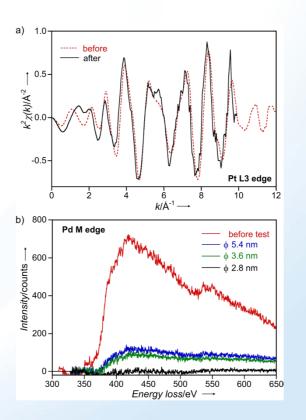

Pt_{ML}/Pd₉Au/C contains 0.062 mgPt cm⁻² Pt/C 0.102 mgPt cm⁻²

The potential limits were 0.6 and 1.0 V; sweep rate of 50 mV s⁻¹. 80°C.

DOE target: Pt mass activity : < 40% loss of for 30,000 cycles; Pt_{ML}/Pd₉Au/C: 30% loss after 200,000 cycles; Pt/C: a terminal loss before 50,000 cycles.

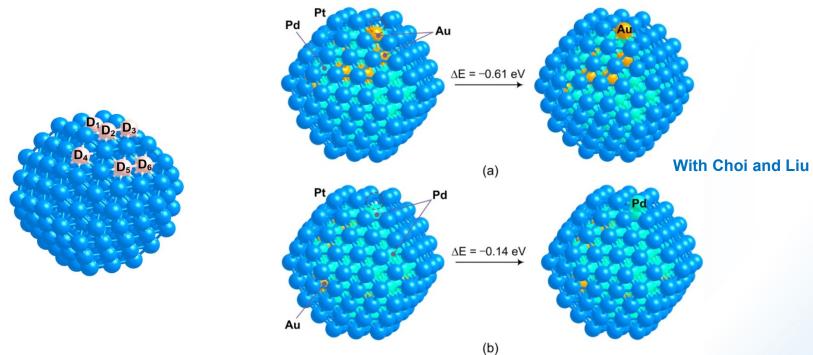
Pt Monolayer deposition via H_{upd}

New mechanism of stability of core-shell electrocatalysts: Shell protected by the core and self-healing effect


- 1. PtOH formation shifted positively.
- 2. Contraction of Pt and Pd lattices induced by loss of Pd self-healing effect; hollow may form
- 3. Cathodic protection effect.

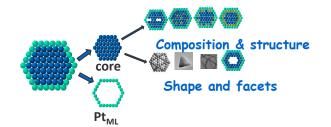
Pt potential cycles structure change change particle size decrease excess of Pt atoms form a bi-layer

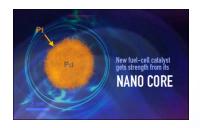
Pd dissolution precludes dissolution of Pt, which would readily occur and a Pt ML would disappear.


The structure of Pt shells was almost retained after the tests

Data supported by EXAFS, XANES, EELS, EDS, RDE, DFT results.

Stability of Pt_{ML}/Pd₉Au₁ from DFT calculations


- 1. Model a sphere-like Pt ML on Pd₉Au₁ random alloy core (*ca* φ1.7 nm)
- 2. Introduce a defect (vacancy) in the Pt ML at vertex (D₃)
- 3. Calculate energy changes (ΔE) when Au or Pd atom diffuses from core to the defect site (ΔE_{Au} = -0.61 eV, ΔE_{Pd} = -0.14 eV)


Au preferentially segregates on the surface → inhibit further dissolution of Pd

This is in agreement with (Zhang, Sasaki, Sutter, Adzic et al., Science, 315 (2007) 220)

BROOKHAVEN NATIONAL LABORATORY

Conclusions

- Pt_{ML}/Pd₉Au/C and Pt_{ML}/Pd/C are practical electrocatalysts.
- Self-healing-mechanism helps in providing stability of these catalysts.
- Pd alloys with refractory metals provide stable and inexpensive cores.
- Several new efficient syntheses include: electrochemical deposition of NWs, deposition of Pd NWs using simple surfactant, using ethanol as a medium and reactant, using UPD H.
- E_{OH} plays an vital important role in the activity and stability of Pt_{ML} for ORR and can be tuned via the interaction between Pt_{ML} and various substrates.
- Significant improvement of activity and stability over those of Pt/C.
- Flexibility of the core-shell structure enables the possibility of the further improvement.

Current Pt/C used in the laboratory tests: 400 μgPt/cm²;

Pt_{MI} electrocatalysts: 40-80 μgPt/cm², 60-100 μgPd/cm²;

For a 100-kW fuel-cell car, 1W/cm²: 4-8g Pt + 10g Pd; current catalyst converter per car: ~ 5g Pt.

Pt_{ML} electrocatalysts for ORR On the road to application and could be further improved!

Acknowledgements

Collaborators

From BNL: W-P. Zhou, Y. Zhu, E. Sutter, C. Ma, C. Koenigsmann, S. Wong

Outside of BNL: M. Mavrikakis, U. Wisconsin, K. More, ORNL,

N. Marinkovic, SCC

Funding

TOYOTA Motor Company

Electrocatalysis Group, BNL

