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Reversible SOFC

• Balancing Energy, Environment, and 
Economy

• How does Reversible SOFC fit in 
Energy/Environment Picture

• Technical Challenges
– Materials
– System

• Conclusions
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Reversible SOFC and Applications Options

• SOFC can be operated in two modes
– Power Generation Mode – Fuel to 

Electricity
– Electrolysis Mode – Electricity to Fuel 

(H2)
• Options

– One device optimized for fuel cell use 
(H2, NG -> e)

– Second device optimized for 
electrolysis use (Renewable e -> fuel: 
H2, syngas etc.)

– Under utilization of capital
– A single device optimized for 

Reversible performance is desirable

• Fuel  Electricity
– When excess power is 

available SOFC can be 
operated in Electrolysis Mode 
to generate Hydrogen

– Stored hydrogen can be used 
later as fuel

• Renewable Electricity + Steam 
 Fuel (H2)

• Renewable Electricity + Steam 
+ CO2 Fuel (synthetic 
methane, Liquid HC)
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Broader Picture to Address Energy, 
Environment & Economy

• Environment
– Climate Change

• CO2 mitigation
– Habitat Impacts
– Air pollution

• Limited Resources
– Oil

• National security
– Gas

• Heating vs. power generation
• Transportation issues

– Renewables
• Intermittent
• Dispersed
• Biomass gasifier converts only 1/3 of carbon to syngas
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Steam Electrolysis Operating Principle
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Reverse Shift & Electrolysis Of CO2

Feed: H2O, CO2, (minor H2, CO)
Reverse Shift Reaction: CO2 + ⇑ H2 <==> CO + ⇓ H2O
As steam is consumed and H2 produced the RSR proceeds to the right

O= flux

Oxygen Product Flow

CO, CO2

H2, H2O

CO, CO2

H2, H2O

}Rev. Shift CO, CO2
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{ CO, CO2
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• Leverage decades of SOFC R&D
• Inputs

– e- (green electrons)
– steam => hydrogen
– co-electrolysis of H2O + CO2 => syngas
– heat input optional, depends on operating point

• Most efficiency means of hydrogen production
– e- to hydrogen 

• η=100% at 1.285V (thermal neutral)
• η= 95% at 1.35V (exothermic)
• η=107% at 1.20V, (heat required)

• Hot O2 and steam byproduct
– Valuable for biomass gasification

High Temperature Electrolysis
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Energy Mix Possibilities for Electrolysis

H2

Gen IV
Nuclear

Wind
Steam/CO2 Electrolysis

Advanced
Concentrator PV
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One Technology - Multiple Modes Of Operation

Fuel

Solid Oxide Stack Module

Electricity

Steam + Electricity Hydrogen
(High Purity)

CO2 & Steam
+ Electricity

Syngas
NG
Biogas
Diesel
JP-8
Coal
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Benefits of R-SOFC
• Vastly expands applications

– Potential to reduce manufacturing cost by using a 
common device for power generation, electrolysis, and 
reversible modes

• Environmental benefits
– In SOFC mode (low emission) and in utilizing renewable 

energy in electrolysis mode
• Questions

– Can current SOFC technology adequate to operate in 
electrolysis mode?

– Cost implications
– Manufacturing Challenges
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Experimental Results



2x60 Cell Stack Module

• 3.8 kW
• 1,200 normal liters/hr. 

hydrogen production
• Operated at thermal neutral voltage
• Stack electrical efficiency = 96.4%
• System thermal distribution issues
• 2,000 hrs. total operation
• 1,000 hrs. on CO2/H2O

– Syngas production sufficient for 100 gallons of FT diesel
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Stack constructed with cell materials that showed good stability in SOFC



Initial Load Steps of Half Module (4 kW)

Module 
Voltage

Module 
Current

Cell (5) Groups 
Voltage
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2 x 60 Cell Stack Module Load History
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Literature Data

Versapower

General Electric
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720 Cell Full-ILS System at INL
5.7 Nm3/hr - 17.5kW H2 Production
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SOEC Open Issues

• Degradation/Lifetime
– Oxygen bond layer stability
– Oxygen electrode 

delamination
– Electrolyte stability
– Chromium migration
– Seals
– Interconnect scale growth & 

resistance
– Electrode microstructure

• Electrode coarsening

• Thermodynamics
– Operating Voltage/Efficiency
– Steam Utilization
– Co-electrolysis of CO2

• High Temp Heat Duty
– 0-15% of energy input
– Wind/Solar/Low-Moderate 

Temperature Nuclear power
– Biomass or Synfuel integration 
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Stack Components
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Sc - ZrO2 (partially stabilized)

Manganite + Zirconia Composite

Cobaltite (current distribution layer)

Ferritic Stainless Steel Separator (Rare earth treated)

air electrode

electrolyte

Corrugated Ferritic Stainless Steel or High Ni alloy

H electrode
Ni + ceria cermet

50 µm50 µm

Ni (current distribution layer)

Corrugated Ni flow field on hydrogen side

Repeat Unit Elements
Baseline Stack
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2X60 cell stack Key Observations

• Electrodes
– Oxygen electrode delamination for 2,000 hr test

• No delamination in short stacks tested for shorter periods (~300 hrs)

– Hydrogen electrode & current distribution layer in good condition

• Metal Interconnect Edge Corrosion
– Cr transport to oxygen electrode bond layer
– Sr migration from oxygen electrode/bond layer

• Gross changes in bond layer chemistry, phase assemblage, conductivity and 
performance

• Initial Performance Reproducible – short to tall stacks
• Unacceptably High Initial Degradation
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Cr-evaporation

SOFC Mode

3%H2O+Air
SOEC Mode

3%H2O+50%O2+50%N2

Higher Cr vapor pressure possibly due to:
1. High PO2 resulting in high CrO3
2. Scale spallation and continued evaporation oxygen and steam pressure dependence
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Cr2O3(s) + H2O(g) + O2(g) = CrO2(OH)2 (g) (1)

Cr2O3(s) + H2O +O2 = CrO(OH)2 (g) (2)

Cr2O3 +O2 = CrO3(g) (3)
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Full-ILS Module #3 Post Test Examination

Oxygen electrode 
delamination

Similar effect as half ILS 
test

Hydrogen electrode 
attached,

bond layer separated with 
interconnect
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Literature Comparison

General Electric
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720 cell Module #3 Post Test Examination

Cobaltite (LSCo)
contacting layer (bond 
layer)

Manganite-Zirconia 
Composite

Manganite Electrode

Electrode section in following EDS Maps

No major change in air electrode microstructure
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Co-Mn Inter-diffusion in Oxygen Electrode

Expected Main Elements

Zr, Mn, Sr

Mn, Sr

Co, Sr

Zr, Mn, Sr

Mn, Sr

Co, Sr
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ILS Module 3 Post-test

• Air electrode delamination
• Potential for Mn & Sr diffusion into ScSZ 

playing a role in delamination
• Mn/Co interdiffusion changing electrode 

activity and conductivity
• No substantial change to air electrode 

microstructure
• Less Cr observed in electrode for module 3

– Module 3 used spinel barrier coating on 
interconnect
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Air Electrode is Key

• Evaluated more than 10 air electrode 
compositions
– Manganite, Cobalt-ferrite, ferrite
– Dopant variations

• One Cobalt-Ferrite was selected for stack 
test
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Air Electrode Comparison Stack

• 10-cell stack
– 5 cells using baseline manganite electrode
– 5 cells using new cobalt-ferrite electrode
– All interconnect with air-side spinel coating

• Monitored voltage of 2-cell groups
– Two 2-cell groups of manganite electrode
– One 2-cell group of mixed electrodes
– Two 2-cell groups of cobalt-ferrite electrode
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O2 Electrode Comparison Stack

• At fixed total stack voltage
– Manganite groups: increase in voltage (ASR) with time
– cobalt-ferrite groups: decrease in voltage with time
– Mixed group: net decrease in voltage with time

1.3 V/cell

1.4 V/cell
Const. Current

29



Post-test: Comparison Stack
Oxygen Electrode and Bond Layer

Extensive delamination of standard manganite Perovskite electrodes

No delamination of new cobalt-ferrite Perovskite electrodes (Ceria interlayer used)
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Electrolyte/anode interface morphology

For 0.8 volt cell - Surface in contact with anode (after dissolving LSM in HCl)

Anode – Electrolyte Interface Electrolyte 

Anode imprint, Elevated ridge formation, Small particulate formation, YSZ grain 
boundary separation, Ellipsoidal porosity at GB

850C for 100 hrs
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Electrolyte – Anode Electrode Interface

Half cell test- 850C, 100Hrs.

Accelerated tests were performed to understand the electrode – electrolyte interface 
delamination and interface compound formation. Large area delamination and crater 
formation was observed under a wide variety of electrolyte/ electrode contact. 

Delamination and crater formation

32



For “No –Volt  Apllied” cell - Surface in contact with electrode (after dissolving LSM in 
HCl)

Electrolyte/Electrode interface examination
No voltage applied

Free Electrolyte surface Electrolyte surface under cathode Electrolyte surface under cathode

Free surface

Under Cathode

A. Mittledorfer, L.J. Gauckler, Solid State Ionics, 111, 185-218, 1998
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For 0.8 volt cell - Surface in contact with cathode (after dissolving LSM in HCl)

Fred van Heuveln. Characterization of Porous Cathodes for Application in Solid Oxide Fuel cells, Ph. D dissertation, Technische Universiteit Twente, 1997.

Free electrolyte surface Cathode impression

Electrolyte – Cathode Interface
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Degradation at YSZ/LSM anode under load

 ~1 μm large anodic impression 
on YSZ

 Small particles left behind on YSZ 
anode side, even after dissolving 
LSM

 Rippling in YSZ seen primarily on 
anode side

 YSZ grain boundary decorated by 
pores

Surface in contact with anode after applying  0.8 volts for 100 hours – anode delaminated

GB Pores

Anode impression



New O2 Electrode Improves Stack Stability
5-cell stack with cobalt-ferrite electrode and Current Collection Layer
Ceria interlayer between ScSZ and electrode
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Excellent Stability, but lower initial performance



Electrolysis Stack Stability Progress
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System Issues
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Reversible Operation – 25 cell Stack

Typical button cell performance 0.6 to 0.7 ohm-cm2 at 800°C
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Stack ASR = 1.25, 
T = 927 C, 
yH2,i = 0.1, 
yH2,o = 0.95

(1.291 V at 1200 K)

Energy of fuel-cell vs. electrolysis mode



Typical SOEC and SOFC Temperature Maps

SOFC ∆T > 90°C
Resistance doubling ~ 67 °C
Thermal expansion issues



SOFC vs SOEC Operation
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System Issues Controlled by SOFC 
Mode
• SOFC mode dominates

– Cell foot print (heat removal issues)
– CTE issues

• SOEC mode
– Materials issues
– Capable of solar (in endothermic mode) and 

wind (exothermic mode) integration
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Syngas

Steam+ CO2

Renewable Electricity

Synthetic Diesel Fraction

Fischer Tropsch Reactor

Compressor & Storage

Water Fraction

FT Product

Current Project on CO2 Beneficiation
Other Option
Reformed Biogas
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Summary
• Single SOFC device capable of reversible operation 

expands applications potential
– Allows greater use of renewable resources
– Opportunity for CO2 re-use to store renewable as liquid 

transportation fuel
– High efficiency hydrogen generation

• Significant differences in degradation mechanism 
between SOFC and SOEC
– Promising composition identified
– Good stability in SOFC mode with new materials
– Requires additional research to study cyclic behavior 

between modes of operation

• Thermal issues more severe in SOFC 
mode
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