Lessons Learned from SOFC/SOEC Development

Greg Gege Tao and Anil V. Virkar

Materials and Systems Research Inc., Salt Lake City, Utah

Presented at NREL/DOE 2011 REVERSIBLE FUEL CELLS Workshop
Crystal City, Virginia
April 19, 2011

U.S. Electricity Generation – present & future

by year 2035:

- ➤ 80% of America's electricity from clean energy sources: wind, solar, clean coal, natural gas, nuclear, etc.
- Renewables represent the smallest share among the various sectors, but are significant
- Renewable generation increase from 10% to 14%: 415 billon kWh/yr to 725 billion kWh/yr (>75% increase)

^{*} EIA Annual Energy Outlook AEO2011 Early Release, December 2010

Renewable Generation Breakdown

	2010	2011	
	billion kWh		
<u>Solar</u>	4.82	20.81	
Geo	16.91	44.47	
<u>Wind</u>	91.75	168.91	

^{*} R. Newell, Annual Energy Outlook 2011 Reference Case, December 16, 2010

Renewable Energy Storage after Generation

Pros:

- ➤ Abundant
- > Readily accessible

Cons:

- Resources are less controllable
- ➤ Intermittency
- > Seasonal nature
- ➤ Lack of demand-based control (load following and regulation)
- > Typically power plants are in remote areas

Solutions:

- Renewable energy storage and grid stabilization
 - electrical energy (e⁻),
 - chemical energy (H₂ or synthetic fuels)
 - mechanical/potential energy (CAES, hydroelectric)

Grid Energy Storage Market in North America*

^{* &}quot;North American Grid Energy Storage Market", Frost & Sullivan Report, July 2009

Energy Storage Technologies

European Emerging Technology Roadmap 2009-2020*

^{* &}quot;Renewable Energy Storage - European Market Analysis", Frost & Sullivan Report, December 2009

What Can Reversible Fuel Cells Do?

To store excess electricity/energy and release it during times of heavy needs with its high quality power

	Pros compared to electrochemical batteries	Cons compared to electrochemical batteries
	Extensive R&D efforts on FC development, which can be leveraged to electrolyzers development	> Early commercialization technology
	Wider operating temperatures (80°C for PEM to 800°C for SOFC) than Li-ion batteries	➤ High cost per kWh
	Higher energy density than Li-ion (1000 Wh/kg vs. 160 Wh/kg)	Low power density,Relatively low round-trip efficiency
> 1	Modular-based technology, readily systems scale-up	Lack of large scale (grid-scale) systems or field-test results, applicable to distributed/decentralized storage applications (near term)
	No moving parts, quiet operation, minimum maintenance	
> (Good for power stabilization (improving power quality)	Long response time
C	Operation is independent of capacity (unlike batteries, capacities are limited by the amount of active electrode materials)	Hydrogen fuel storage, or synthetic fuel production/storage
> (No self-discharge issue, long shelf-life Charge (electrolyzer mode) /discharge (fuel cell mode) cycles degradation rate probably is less temperature dependent on operating temperatures than batteries	 Lack of supporting data on the charge/discharge cycle degradation rate High long-term degradation rate

MSRI's Fuel Cell / Electrolyzer R&D Activities

MSRI has expertise in materials and electrochemical technologies for power generation and energy storage applications, including fuel cells/electrolyzers, rechargeable batteries and thermoelectric converters.

Fuel Cells

- SOFC based-on oxygen ion conducting electrolyte membrane
- SOFC based-on high temperature proton conducting electrolyte membrane
- > PEMFC
- SOFC cells from 1 to 400 cm² active area
- Planar SOFC stacks 75 W to 2 kW
- Tubular SOFC bundles up to 300 W

Hydrogen Production

- High temperature steam electrolysis
- Advanced fuel-assisted electrolysis
- H₂ production direct from coal and petcoke

Solid Oxide Electrochemical Technologies

Fuel-electrode Supported Solid-Oxide Devices: SOFC & SOEC

specializing in cell/stack materials R&D

- 1. Nickel+zirconia-based fuel-electrode supports: ~700 μm
 - mechanical strength; redox-tolerance; low concentration polarization losses; costs
- 2. Graded, fuel-electrode functional layer: ~ 15 μm
 - o sulfur-tolerance; redox-tolerance
- 3. Thin film electrolyte: ~ 8 μm
 - enhanced conductivity
- 4. Graded, O₂-electrode functional layers: ~ 20 μm
 - Low sheet resistance; extended three phase boundary length; improved bonding
- 5. O_2 -electrode current collector layer: ~ 50 μ m
 - low ohmic/contact resistance
- 6. Metallic interconnect
 - low oxidation rate; low cost
- 7. Sealing gasket
 - Compliant/rigid seals; thermal expansion match; easy fabrication/assembly

SOFC Electrode Materials Development

Single Button-sized Cell Performance

- Power density as high as 2.1 W/cm² on button-size cells
- > > 5,000 hours with minimal degradation

Fuel – humidified hydrogen, Oxidant - air

1 to 2 kW Capacity SOFC Stacks

kW-scale SOFC stack (100 cm² per-cell active area, 60 cells/stack)

SOFC Stack Long-Term Test with Thermal Cycles

Power degradation rate = 0.85% /1000hrs over 2500 h testing

5 cell stack of 100 cm²/cell 50% H₂(bal. N₂) and air at 40% utilization @ 0.36A/cm²; 750°C Metal interconnects 5 thermal cycles with no significant degradation

SOFC vs. SOEC Operation — (button cells)

- ➤ Long-term test results comparison between two button cells tested in SOFC and SOEC modes
 - SOFC test (0.7 A/cm²) was interrupted on schedule to measure the ohmic losses via current-interruption
 - SOEC test (1 A/cm²) was frequently interrupted for refilling the water tank

SOFC mode (power generation): no degradation in 2500 hrs, and ~ 1.5%/1000 hrs afterward

Being tested more than 4500 hrs · Very stable cathode material 0.9 No degradation in first 2500 hrs · Scheduled IR measurement 800°C in SOFC mode Less than 1.5%/1000 hrs afterward 8.0 0.7 0.6 Voltage (V) 0.5 Cell ASR Ohmic ASI • 3553 hrs Act ASR S □n Max ■p_@0.7V 0.3 0.2 0.1 1.5 Current density (A/cm²) Time (hr) 500 2500 3000 3500 4000 4500 1000 1500 2000 Time (hr)

SOEC mode (hydrogen production): Projected degradation rate ~ 50%/1000 hrs

SOFC vs. SOEC Operation – (stacks)

- ➤ Long-term test results comparison between two 5-cell stacks tested in SOFC and SOEC modes
 - 100 cm² per cell active areas
 - Fixed reactant utilizations at 40%
 - Operating at fixed current mode (36.5 A and 14 A in SOFC and SOEC mode, respectively)

SOFC mode (power generation): Voltage degradation rate < 2%/1000 hrs

SOEC mode (hydrogen production):
Projected degradation rate ~ 30%/1000 hrs

SOFC Operation Vs. SOEC Operation

- ➤ SOFC operates typically at 700~850°C
- Per cell voltage is 0.7~0.85 V
- Flux of oxygen ions and electrons are on the opposite direction inside the electrolyte

- ➤ SOEC operates typically at 700~850°C
- ➤ Per cell voltage is 0.9~1.3 V
- ➤ Flux of oxygen ions and electrons are on the same direction inside the electrolyte
- ➤ High steam concentration (or high P_{O2}) on steam electrode

Analysis of SOFC Vs. SOEC Operation*

Schematic variation of <u>measurable</u> electric potential (ϕ) and oxygen chemical potential (μ_{O_2}) through the electrolyte in fuel cell mode (a) and electrolyzer mode (b).

- (a) In fuel cell normal operation mode, oxygen partial pressure inside the electrolyte is mathematically bounded by the oxygen partial pressures of two electrodes. High P_{O_2} is unlikely developed inside the electrolyte
- (b) In the electrolyzer operation mode, the oxygen partial pressure inside the electrolyte is not mathematically bounded by the electrodes.Electrode delamination is possible under certain operation conditions

^{*:} A.V. Virkar, "Mechanism of oxygen electrode delamination in solid oxide electrolyzer cells", Int. J. Hydrogen Energy 35 (2010) 9527-9543

Dissection of SOEC Performance Degradation

- Focus on materials modification
- ➤ Improve oxygen electrode stability

SOEC Development – at a Stack Level (5-cell stack)

Five-cell stack assembly (post-test)

Stack testing protocol:

- 5-cell/stack, 100 cm²/cell active area
- > 800°C
- ➤ Initial test was performed in the SOFC mode as a baseline, followed by SOEC tests
- \triangleright The fuel-electrode gas compositions varied from pure H₂ to 10%H₂, bal. H₂O
- ➤ Long-term tests were performed for hydrogen production using 70%H₂O bal. H₂ as the reactant (SOEC mode)
- SOEC long-term tests were performed at a constant current (fixed current)
- In addition, the long-term SOEC tests were interrupted for scheduled SOFC tests.

SOEC Stacks Long-term Degradation Study

SOEC Degradation Study Progress

- MSRI has developed materials sets suitable for reversible SOFC/SOEC application
- In last 2 years, MSRI has tested 5-cell stacks in SOEC mode, with accumulated 10,000 stack-hours
- Degradation rate reduced from initial 30%/1000hrs to < 2%/1000hrs</p>
- Independent tests on our 5-cell stacks by a third party achieved similar results

5-cell Stack Tests in SOFC & SOEC Modes

5-cell Stack Long-term Test in SOEC Mode

Fixed the stack current @ 20.3 A, degradation rate ~ 1.2%/1000 hrs

Scheduled SOFC Tests During SOEC Long-term Test @ Different Time

Summary

- Reversible SOFC/SOEC shows logical promise for storing renewable electricity/energy
- But for a near-term target, it is more applicable to distributed/decentralized storage applications
- Due to the different operation mechanisms between SOFC and SOEC, cell materials developed for SOFC may not be suitable for SOEC applications
- SOECs typically show a higher degradation rate than SOFCs
- ➤ MSRI has investigated and developed high-performing material sets for reversible SOFC/SOEC applications
- ➤ With knowledge gained from the accumulated 10,000 stack-hours tests, MSRI has successfully reduced the SOEC stack degradation rate from initial 30%/1000hrs to <2%/1000hrs
- Fundamental studies of cell materials are needed to further improve reversible SOFC/SOEC performance

Acknowledgements

- ☐ The SOEC degradation study is funded by the Idaho National Laboratory
- Support from Drs. Manohar Sohal, James O'Brien, Carl Stoots and Stephen Herring at the Idaho National Laboratory is much appreciated

