Hydrogen Energy Storage: Experimental analysis and modeling

Energy Efficiency & Renewable Energy

Monterey Gardiner

U.S. Department of Energy Fuel Cell Technologies Office

Question and Answer

 Please type your question into the question box

hydrogenandfuelcells.energy.gov

Hydrogen Energy Storage: Experimental analysis and modeling

Josh Eichman, PhD

8/19/2014

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Motivation for hydrogen energy storage

• Drivers

- More renewables bring more grid operation challenges
- Environmental regulations and mandates
- Hydrogen can be made "dispatch-ably" and "renewably"
- Hydrogen storage can enable multi-sector interactions with potential to reduce criteria pollutants and GHGs

Hour

Source: GE Energy Consulting (2010). Integration of Renewable Resources: Operational Requirements and Generation Fleet Capability at 20% RPS, CAISO, PNNL, PLEXOS, Nextant.

Source: NREL 00560.

Show that hydrogen technologies...

- Can be operated flexibly and in a variety of configurations
- 2. Can enable interactions between multiple sectors
 - Electric, transport, heating fuel and industrial supply
- Can participate in electricity markets which improves competitiveness and further enables renewables

Outline

- Hydrogen System Configurations
- Grid Operation Requirements
- Experimental flexibility tests
- Modeling methodology and results
 - Techno-economic comparison
 - Energy capacity sensitivity analysis
 - Impacts from increased renewables (backup slides)
 - Impacts on larger grid system (backup slides)
- Recent hydrogen energy storage Workshop
- Conclusions

Hydrogen System Configurations

Source: (from top left by row), Path 26 Wikipedia GNU license; Matt Stiveson, NREL 12508; Keith Wipke, NREL 17319; Dennis Schroeder, NREL 22794; NextEnergy Center, NREL 16129; Warren Gretz, NREL 09830; David Parsons, NREL 05050; and Bruce Green, NREL 09408

NATIONAL RENEWABLE ENERGY LABORATORY

Hydrogen storage and Power-to-gas (PtG) projects

Hydrogen Projects: 41 realized and 7 planned as of 2012

- Germany (7) (5 planned)
- USA (6)
- Canada (5)
- Spain (4)
- United Kingdom (4) (1 planned)
- etc.

Source: Gahleitner, G. (2013). "Hydrogen from renewable electricity: An international review of power-to-gas pilot plants for stationary applications." International Journal of Hydrogen Energy 38(5): 2039-2061.

 Germany has 22 green hydrogen and PtG projects as of 2012 (see figure)

Source: www.gtai.de/GTAI/Content/EN/Invest/_SharedDocs/Downloads/GTAI/Infosheets/Energy-environmental/info-sheet-green-hydrogen-power-to-gasdemonstrational%2520projects-en.pdf

- Just Announced: 2 MW Power-to-Gas project planned for Ontario, Canada
 - Acts as energy storage for grid management and regulation provision

Source: <u>www.hydrogenics.com/about-the-company/news-updates/2014/07/25/hydrogenics-</u> <u>selected-for-2-megawatt-energy-storage-facility-in-ontario</u>

Grid Operation Requirements

 Electricity demand must closely balance production

Grid Operation Requirements

Ancillary Services

- Load Following
- Regulation (freq response)
- Spinning Reserve
 - Non-Spinning Reserve
 - Other

Reserves

• Voltage Support

• Black Start

Example: 2,600 MW are dropped at 6:11 PM

Capacity Markets

- Sufficient capacity must be acquired
 - Capacity markets are used to achieve resource adequacy targets
 - Ensures new generation is built (i.e., long-term)
 - Ensures installed generators make sufficient money to pay for capital costs.

• Cost of New Entry (CONE)

 Equivalent to purchasing a new combustion turbine

Assume \$150/kW-year

Source: Pfeifenberger, J.P.; Spees, K.; Newell, S.A. 2012. Resource Adequacy in California. The Brattle Group

Grid Operation Requirements

Market value varies for services provided

- o Energy
 - Electric Price

Ancillary Services

- Load-Following Up/Down
- Regulation Up/Down
- Spinning Reserve
- Non-Spin Reserve
- Voltage Support
- Black Start
- Capacity
 - \$150/kW-year

Source: Pfeifenberger, J.P.; Spees, K.; Newell, S.A. 2012. Resource Adequacy in California. The Brattle Group

Wind to Hydrogen Project

- Flexibility testing is performed at the National Wind Technology Center
- U.S. DEPARTMENT OF Xcel Energy* ENERGY Renewable Xcel Energy and NREL's Integrated Renewable Hydrogen System Integration AC-DC Converter Responsive **Excess Grid-Compatible Electricity** 10 kW loads (demand **Photovoltaics** 100kW Wind Turbine Utility Grid ASCO Northern Power Systems AC-DC response) Transfer ---Converter Switch DC-DC AC Power • Energy HOGEN 40RE Converter (PEM) Electrolyzer **Proton Energy Systems H**-Series 2.2 kg/day (PEM) Electrolyzer Storage 11 Proton Energy Systems 13 kg/day Multiple OR outputs 5kW Fuel Cell (PEM) • HMXT-100 (Alkaline) 60 kW ICE Genset **Teledyne Energy Systems** Altergy Systems Hydrogen Engine Center 12 kg/day streams AC-DC Converter Hydrogen Output (100-200psi) Electricity Transport fuel Industrial gas H₂ Filling Station for Bergey 10kW Compression to 3500psi 115 kg Hydrogen Storage Compression to 6000psi 115kg Hydrogen Storage Wind Turbine **Pressure Products Industries** Capacity at 3500 psi **Pressure Products Industries** Capacity at 6000 psi FCEVs and H_aICEs

CP Industries

March 2011

FIBA Technologies

Electrolyzer Flexibility Tests

- Testing explored several parameters
 - Startup and Shutdown Ramp Rate

 - Minimum Turndown
 Frequency Response

– Response Time

	PEM	Alkaline	
Manufacturer	Proton OnSite	Teledyne	
	Proton Onsite	Technologies	
Electrical Power	40kW (480VAC)	40kW (480VAC)	
Rated Current	155A per stack	220A 75 cell stack	
Stack Count	3	1	
Hydrogen Production	13 kg/day	13 kg/day	
System Efficiency at	ZE C (k) M h (kg)	$OE = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right)$	
Rated Current	75.6 (kWh/kg)	95.7 (kWh/kg)	

Source: Eichman, J.D.; Harrison, K.; Peters, M. (Forthcoming). Novel Electrolyzer Applications. NREL/TP-5400-61758

Electrolyzer Response Time

Power set-point was changed (PEM unit shown below)

- Ramp Up: 25%, 50%, and 75% \rightarrow 100%
- Ramp Down: 100% \rightarrow 75%, 50% and 25%

Electrolyzers can rapidly change their load point in response to grid needs

Electrolyzer Frequency Regulation Tests

Source: Harrison K., Mann M., Terlip D., and Peters M., NREL/FS-5600-54658

Electrolyzers can accelerate frequency recovery

NATIONAL RENEWABLE ENERGY LABORATORY

Electrolyzer Testing Results vs. Requirements

Grid Service Requirements

TIME (MINUTES)

Source: Kirby, B.J. 2006. Demand Response for Power Systems Reliability: FAQ. ORNL

Source: Eichman, J.D.; Harrison, K.; Peters, M. (Forthcoming). Novel Electrolyzer Applications. NREL/TP-5400-61758

Electrolyzers can respond fast enough and for sufficient duration to participate in electricity markets

NATIONAL RENEWABLE ENERGY LABORATORY

Capacity req. for grid services is reducing

• Minimum capacity requirements to bid into market

- <u>50 MW</u> for E.ON <u>as of 2006</u> [2]
- <u>30 MW</u> for EnBW, RWE, and VET for minute reserve power in Germany as of 2006 [2]
- <u>10 MW</u> for ISO-NE and the primary and secondary control markets in Germany [2, 4]
- <u>1 MW</u> for NYISO, PJM and CAISO [3, 4]
- o <u>100 kW</u> load reduction in the case of NYISO curtailment program [1]

• Capacity can often be aggregated

- 1. NYISO Auxiliary Market Operations (2013). Emergency Demand Response Program Manual, New York Independent System Operator, http://www.nyiso.com/public/webdocs/markets_operations/documents/Manuals_and_Guides/Manuals/Operations/edrp_mnl.pdf.
- 2. Riedel, S. and H. Weigt Electricity Markets Working Papers: German Electricity Reserve Markets, Dresden University of Technology and Energy Economics and Public Sector Management, WP-EM-20, <u>http://hannesweigt.de/paper/wp_em_20_riedel_weigt_Germany_reserve_markets.pdf</u>.
- 3. Intelligent Energy Europe (2008). Market Access for Smaller Size Intelligent Electricity Generation (MASSIG): Market potentials, trends and marketing options for Distributed Generation in Europe, Energy Economics Group, Fraunhofer ISE, Technical University of Lodz, The University of Manchester and EMD International A/S, http://www.iee-massig.eu/papers_public/MASSIG_Deliverable2.1 Market Potentials and Trends.pdf.
- 4. Cutter, E., L. Alagappan and S. Price (2009). Impacts of Market Rules on Energy Storage Economics, Energy and Environmental Economics, http://www.usaee.org/usaee2009/submissions/OnlineProceedings/8025-Energy%20Storage_Paper%20E3.pdf

Grid capacity requirements are approaching electrolyzer manufacturer scale-up targets

Modeling Approach

Modeling Strategies

- Price-taker
- Production Cost
- o Hybrid

Can perform time-resolved co-optimization of energy and ancillary service products very quickly

1.) Sufficient capacity is available in all markets

2.) Objects don't impact market outcome (i.e., small compared to market size)

Modeling Approach: Production Cost Model

(days or weeks of runtime)

Modeling Approach: Hybrid

Approach – Assumptions for Price-taker

Properties	Pumped Hydro	Pb Acid Battery	Stationary Fuel Cell	Electrolyzer	Steam Methane Reformer
Rated Power Capacity (MW)	1.0	1.0	1.0	1.0	500 kg/day
Energy Capacity (hours)	8	4	8	8	8
Capital Cost (\$/kw)	1500 ¹ - 2347 ²	2000 ¹ - 4600 ¹	1500 ³ - 5918 ²	430 ³ - 2121 ⁶	427 – 569 \$/kg/day4
Fixed O&M (\$/kW-year)	8 ¹ - 14.27 ²	25 ¹ - 50 ¹	350 ²	42 ⁴	4.07 – 4.50 % of Capital ⁴
Hydrogen Storage Cost (\$/kg)	-	-	623 ⁵	623 ⁵	623 ⁵
Installation cost multiplier	1.24	1.24	1.24	1.24	1.924
Lifetime (years)	30	12 ¹ (4400hrs)	20	20 ⁴	204
Interest rate on debt	7%	7%	7%	7%	7%
Efficiency	80% AC/AC ¹	90% AC/AC ¹	40% LHV	70% LHV	0.156 MMBTU/kg ⁴ 0.6 kWh/kg ⁴
Minimum Part-load	30% ⁷	1%	10%	10%	100%

Source: ¹EPRI 2010, Electricity Energy Storage Technology Options, 1020676 ²EIA 2012, Annual Energy Outlook ³DOE 2011, DOE Hydrogen and Fuel Cells Program Plan ⁴H2A Model version 3.0 ⁵NREL 2009, NREL/TP-560-46719 (only purchase once if using FC&EY system) ⁶NREL 2008, NREL/TP-550-44103

⁷Levine, Jonah 2003, Michigan Technological University (MS Thesis)

Price-Taker Results with historical prices

Comparison of yearly revenue and cost

Name	Technology	
HYPS	Pumped Hydro	
Batt	Battery	
FC	Fuel Cell	
EY	Electrolyzer	
SMR	Steam Methane Reformer	
Name	Services	
All	All Ancillary Services	
All Eonly	Services Energy	

Price-Taker Results with historical prices

• Comparison of yearly revenue and cost

Name	Technology	
HYPS	Pumped Hydro	
Batt	Battery	
FC	Fuel Cell	
EY	Electrolyzer	
SMR	Steam Methane Reformer	
Name	Services	
All	All Ancillary Services	
Eonly	Energy Arbitrage only	

Price-Taker Results with historical prices

Selling hydrogen increases competitiveness

Providing ancillary services > Energy only > Baseload

Electrolyzer providing demand response is promising

Energy Capacity Sensitivity Analysis

FC-EY storage device with varying energy capacity

More storage is not necessarily more competitive in current energy and ancillary service markets

Hydrogen Energy Storage Workshop

- Goal: Identify challenges, benefits and opportunities for commercial hydrogen energy storage applications to support grid services, variable electricity generation, and hydrogen vehicles
- Scope: Convened by U.S. DOE and Industry Canada to explore a broad range of services from Hydrogen storage systems in the near and long term

MAY 14-15TH, SACRAMENTO, CA

- **Focus: Four key topics:**
 - Lessons Learned and Demonstration Status
 - Market Opportunities and Business Models
 - Technology R&D and Near-Term Market Potential
 - Policy and Regulatory Challenges and Opportunities

Workshop Participants

 65 participants with a significant diversity of stakeholder types and a focus on policy expertise

California State Government Agencies **CPUC:** California Public **Utilities Commission** SCAQMD: South Coast Air Quality Management State Gov. (CARB) 5 District **CEC:** California Energy Commission **CARB:** California Air **Resources Board GO:** Governor's Office

Industry 9

Preliminary Workshop Findings

• Example Findings

- Criteria and Barriers
 - Technical and
 Economic Viability
 - Multiple end uses
- \circ Policy
 - Equal treatment and credit in markets
- Next Steps
 - Demonstration and pilot projects

Source: Melaina, M., J. Eichman, (In Review). "Hydrogen Energy Storage: Grid and Transportation Services". NREL/TP-5400-62518

Analysis Conclusions

<u>Flexibility</u>

1. Electrolyzers can respond sufficiently fast and for a long enough duration to participate in electricity markets.

Economic Viability

- 1. Sell Hydrogen: Systems providing strictly storage are less competitive than systems that sell hydrogen
- 2. Revenue w/ ancillary service > energy only > baseload
- 3. Electrolyzers operating as a "demand response" devices have very favorable prospects
- 4. More storage is not necessarily more competitive in current energy and ancillary service markets

Questions?

Backup Slides

Hybrid model results with high renewables

More Renewables yields greater value for hydrogen equipment

Projected renewable capacity in California in Technology Name 2022 increased by 2x, 3x, 4x and 5x **HYPS Pumped Hydro** no sale of H₂ 400kg/day (~80% cap), \$3-10/kg Batt Battery **CAISO 2022** FC **Fuel Cell** 1.5 AISO REN_{x2} EY Electrolyzer CAISO RENx3 H₂ sale price CAISO RENx4 Steam range (\$3-10/kg) CAISO RENx5 1.0 -**SMR Methane** Cost Cost Range Reformer (low to high) -7 0.5 -**Services** Name **All Ancillary** 400kg H₂ All **Services** sold/day No H₂ Sold 0.0 Energy FC-SMR Eonly FC-SMR All Batt Eonly Batt All FC-EY Eonly FC-EY All FC-EY Eonly FC-EY All FC-SMR AII HYPS All EY Eonly EY All FC-SMR Eonly SMR Baseload EY Baseload HYPS Eonly Eonly Arbitrage only "Flat" **Baseload** operation

Yearly Revenue and Cost (million \$)

Production Cost Results for Electrolyzer acting as a demand response device

- Integrating H₂ devices into a large-scale grid simulation tool shows how the grid will be affected
 - Emissions

High value of H₂ makes it more valuable than

- Production cost
- Generation mixture
- \circ Prices

Comparison to H2A

Integration with the grid can lower feedstock costs

and increase revenue

• H2A Current Central Hydrogen Production

NREL and West Texas A&M University

Project to show how hydrogen technologies can be used to support grid operation and when high renewable penetrations require long-term storage

Thank You

<u>Monterey.Gardiner@ee.doe.gov</u>

hydrogenandfuelcells.energy.gov