FUEL CELL TECHNOLOGIES PROGRAM

Hydrogen Storage Materials Database Demonstration

12/13/2011

Ned Stetson

Storage Tech Team Lead Fuel Cell Technologies Program U.S. Department of Energy

www.bcs-hq.com

Hydrogen Storage Materials Database

Marni Lenahan December 13, 2011

Database Background

- The Hydrogen Storage
 Materials Database was built to
 retain information from DOE
 Hydrogen Storage funded
 research and make these data
 more accessible.
- Data includes properties of hydrogen storage materials investigated such as synthesis conditions, sorption and release conditions, capacities, thermodynamics, etc.

http://hydrogenmaterialssearch.govtools.us

Current Status

- Data continues to be collected from DOE funded research.
- The objective of this database is for it to be a resource for the research community to accelerate the development of advanced hydrogen storage materials.

Two Types of Data

Hydpark Data

- Historical data collection of metal-hydrogen systems including their properties, applications, and literature sources
- Funded by DOE and Sandia National Laboratories to contribute to IEA-HIA

Current Data

- Includes data from:
 - DOE funded research since 2002
 - Requestors, upon approval
- Categories of materials include:
 - Adsorbents
 - Chemical materials
 - Reversible Hydrides

Demonstration

Hydrogen Storage Materials Database

General Search Example: Ammonia Borane

70 search result(s) found for Chemicals

Show Details

Material Name	Chemical Formula	Principal Investigator	Institution
Ammonia Borane (Show Details)	NH3BH3	Kevin Ott	University Of Washington
Ammonia Borane (AB) (Show Details)	NH3BH3	Abhi Karkamkar	Pacific Northwest National Laboratory
Ammonia Borane (AB) + Ammonium chloride (Show Details)	NH3BH3+NH3Cl (20%)		Pacific Northwest National Laboratory

Detailed Information

Material Name	Chemical Formula	Principal Investigator	Institution	Variant Type Code	Development Status Code	Synthesis Method	Synthesis Conditions	Precursors	Activation	Entry Date	H Weight Density Theory (theoretical wt%)	H Weight Density Experiment (observed wt%)	H Weight Density Reference	H Volume Density Theory (g/L)
(Show Details)	NH3BH3	Kevin Ott	University Of Washington	Homogeneous Catalyst	Discontinued Development		Conventional organometallic synthesis methods			11/21/2011	19.40	6.50	B. L. Dietrich et al, J. Am. Chem. Soc. 2008, 47, 8583.	
Ammonia Borane (AB) (Show Details)	N НЗВНЗ	Abhi Karkamkar	Pacific Northwest National Laboratory	Other (OT2)	Discontinued Development	Heldebrant, D.J., et al., Energy & Environmental Science, 2008. 1(1): p. 156-160.				03/29/2011	19.40	16.00		146.00
Ammonia Borane (AB) + Ammonium chloride (Show Details)	NH3BH3+NH3Cl (20%)		Pacific Northwest National Laboratory	Other (OT2)	Discontinued Development	AB by Heldebrant, D.J., et al., Energy & Environmental Science, 2008. 1(1): p. 156-160. plus ball milling of additive	N/A	N/A	N/A	02/02/2011				

Two Ways to Display Additional Details

Detail Information

Material Name: Ammonia Borane Chemical Formula: NH3BH3 Principal Investigator: Kevin Ott

Institution: University Of Washington
Variant Type Code: Homogeneous Catalyst
Development Status Code: Discontinued Development

Synthesis Method:

Synthesis Conditions: Conventional organometallic synthesis methods

Synthesis Method Reference: Precursors:

Activation:

Entry Date: 11/21/2011

H Weight Density Theory (theoretical wt%): 19.40 H Weight Density Experiment (observed wt%): 6.50

H Weight Density Reference: B. L. Dietrich et al, J. Am. Chem. Soc. 2008, 47, 8583.

H Volume Density Theory (g/L):

H Volume Density Experiment (g/L): H Volume Density Reference (g/L):

Temperature Onset Release (k): 300

Impurities Released: Low temperature release, none detected

Temperature FullRelease (k): 298

Temperature Release Reference: B. L. Dietrich et al, J. Am. Chem. Soc. 2008, 47, 8583.

Additional Comments:

Close Window

10

Discontinued Development | 160. plus ball milling of additive

General Search Result

Export to Excel <a>

10, 29 wt% additive

Export to PDF 🔁

General Search Result

70 search result(s) found for Chemicals

Item No.	Material Name	Chemical Formula	Variant Type Code	Development Status Code	Synthesis Method
1	Ammonia Borane	NH3BH3	Homogeneous Catalyst	Discontinued Development	
_	A THIRD COLUMN		nomegeneous eataryst	Discontinued Development	Heldebrant, D.J., et al., Energy &
					Environmental Science, 2008. 1(1): p. 156
2	Ammonia Borane (AB)	NH3BH3	Other (OT2)	Discontinued Development	
_	(12)		(3.12)		AB by Heldebrant, D.J., et al., Energy &
	Ammonia Borane (AB) + Ammonium				Environmental Science, 2008. 1(1): p. 156
3	chloride	NH3BH3+NH3CI (20%)	Other (OT2)	Discontinued Development	
			0.1.2)		AB by Heldebrant, D.J., et al., Energy &
	Ammonia Borane (AB) + beta-				Environmental Science, 2008. 1(1): p. 156
4	cyclodextin	30wt% beta-cyclodextin	Other (OT2)	Discontinued Development	160. plus ball milling of additive
-	,	, , , , , , , , , , , , , , , , , , , ,	(2.12)		AB by Heldebrant, D.J., et al., Energy &
					Environmental Science, 2008. 1(1): p. 156
5	Ammonia Borane (AB) + boric acid	30 wt% boric acid	Other (OT2)	Discontinued Development	
_	(,				AB by Heldebrant, D.J., et al., Energy &
					Environmental Science, 2008. 1(1): p. 156
6	Ammonia Borane (AB) + Cellulose	30 wt% and 50 wt%	Other (OT2)	Discontinued Development	
			,	·	AB by Heldebrant, D.J., et al., Energy &
					Environmental Science, 2008. 1(1): p. 156
7	Ammonia Borane (AB) + Citric acid	30 wt% citric acid	Other (OT2)	Discontinued Development	160. plus ball milling of additive
	, ,				AB by Heldebrant, D.J., et al., Energy &
					Environmental Science, 2008. 1(1): p. 156
8	Ammonia Borane (AB) + d-glucose	30wt% additive	Other (OT2)	Discontinued Development	160. plus ball milling of additive
					AB by Heldebrant, D.J., et al., Energy &
					Environmental Science, 2008. 1(1): p. 156
9	Ammonia Borane (AB) + Dextrin	30wt% additive	Other (OT2)	Discontinued Development	160. plus ball milling of additive
					AB by Heldebrant, D.J., et al., Energy &
	Ammonia Borane (AB) + diethylene				Environmental Science, 2008. 1(1): p. 156

Other (OT2)

Advanced Search: Institution

Advanced Search: Primary Investigator

Advanced Search: Reversible Hydrides

Hydride Information Center Example: A2B

				Search
Material Class:	A2B		•	
Composition Formula:				
Hydrogen Weight Percent:	Min:	Max:		
Heat of Formation (kJ/mol H2):	Min:	Max:		
Temperature (°C):	Min: 100	Max: 300		
Pressure (Atmospheres Absolute):	Min:	Max:		
Author:	Select Author		•	
Year:	Select Year		•	
		HydPark Data Over	view	

Material Class	Composition Formula	Hydrogen Weight Percent	Heat of Formation (kJ/mol H2)	Temperature (°C)	Pressure (Atmospheres Absolute)	Author Year	Reference Number	Comment1
A2B	Mg2Ni1-yBey	3.9	71 - 80	337	3 - 5	Lupu, 1982	419	(y = 0.15- 0.25)
A2B	Mg2Ni1-yCuy	2.6	53 - 73	300	3.5 - 8	Darnaudery, 1983	417	(y = 0-1)
A2B	Pr2Al	1.4				Semenenko, 1985	1151	
A2B	Th1.5Ce.5Al	0.4	133	650	0.0003	Van Vucht, 1963	492	
A2B	Th2Al	0.8	130	500	0.001	Van Vucht, 1963	492	

Adding Data

- Select "Request Access to Add Data" at top of database on the homepage.
- Fill out required fields on the form and optional fields, if desired.
- The Database Administrator will send an e-mail notification to acknowledge receipt of the request and provide next steps.

Data Approval

- All data requests will be submitted to the Fuel Cell Technologies Program for approval.
- The Database Administrator will send the Requestor notification of approval and a spreadsheet for the Requestor to fill in with data.
- After the Database Administrator receives the data, the Database
 Administrator will provide the Requestor with estimated date for upload.
- All data will undergo a review to check for errors before being posted on the public site.

Next Steps

- Continue to collect data from Primary Investigators and other hydrogen storage research groups for incorporation into the database.
- Obtain feedback from users to further improve and enhance the functionality and usefulness of the database.
- Investigate opportunities to link the database to other data clearinghouses, such as Lawrence Berkeley National Laboratory's Materials Project (https://www.materialsproject.org/).

Marni Lenahan

Manager, Technology Deployment BCS, Incorporated 410-997-7778, ext. 412 mlenahan@bcs-hq.com

Access the Hydrogen Storage Materials Database:

http://hydrogenmaterialssearch.govtools.us/

Slides from Previous Webinars

To access the slides from this and previous Webcasts, please visit: http://www1.eere.energy.gov/hydrogenandfuelcells/webinar_archives.html