
U.S. DEPARTMENT OF

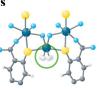
Office of **ENERGY EFFICIENCY & RENEWABLE ENERGY**

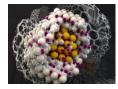
Hydrogen Materials Advanced Research Consortium (HyMARC) Enabling twice the energy density for hydrogen storage

ORGANIZATION

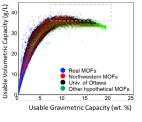
Five national labs make up HyMARC's core team

ARC




ACCOMPLISHMENTS

Demonstrated pathways to higher H₂ densities with the first material which binds two H₂ molecules at a metal-organic framework (MOF) open metal site; and with a vanadium-based MOF that is the first material with an adsorption enthalpy within the 15-25


kJ/mol range predicted to enable room temperature operation (21 kJ/mol), and a 101% higher usable gravimetric capacity compared to the MOF-5 benchmark (-40°C to 25°C/5 to 100 bar).

Identified synthetic routes to improved operation conditions for the promising Mg(BH₄)₂ system by 100°C and 200 bar lower than prior state of the art, and found that the addition of an electrolyte facilitates a 10x improvement of dehydrogenation kinetics.

Developed new formats of metal hydrides with improved properties, demonstrating doubled hydrogenation and dehydrogenation rates of Li₃N through confinement within nanoporous carbon structures; simulations used to improve mechanistic understanding of the underlying processes.

Applied machine learning and computational modeling techniques to screen 500,000+ real and hypothetical structures for usable capacities; thousands were identified with the potential to outperform current state-of-the-art MOFs.

EXAMPLES OF HYMARC CAPABILITIES

- A world-class adsorption measurement validation facility
- Full suite of neutron and X-ray characterization techniques
- In-situ, variable pressure DRIFTS, NMR, calorimetry
- Nanoscale material synthesis
- Comprehensive set of modeling and simulation tools
- System modeling and techno-economic analysis

Streamlined access to several lab user facilities

The core lab group works synergistically with new seedling projects solicited through funding opportunity announcements (20 projects to date-full list on page 2).

HyMARC by the Numbers

130+ publications and 1 book chapter 9 patents and 2 pending 60+ lab staff/scientists 57 postdocs 35 grad students 13 undergrads involved

Contacts

For more information about HyMARC, visit their website, hymarc.org, or contact the co-directors: Mark Allendorf (mdallen@sandia.gov) and Tom Gennett (Thomas.Gennett@nrel.gov)

U.S. DEPARTMENT OF

Office of **ENERGY EFFICIENCY & RENEWABLE ENERGY**

Hydrogen Materials Advanced Research

Consortium (HyMARC) Enabling twice the energy density for hydrogen storage

Leadership, Tasks, and I	Focus Areas		
HyMARC Directors	Core Lab Leads		
Mark Allendorf (SNL) Tom Gennett (NREL)	Tom Autrey (PNNL) Jeff Long (LBNL)	David Prendergast (LE Vitalie Stavila (SNI	, , , , , , , , , , , , , , , , , , , ,
Task 1: Sorbents Task			2: Hydrides
Optimization of binding	• Multiple H_2 binding • Sol	tal hydride thermodynamics id interfaces and surfaces ivation of B-B and B-H bonds	 Nanoscaling to improve thermo/kinetics Microstructural impacts Machine learning for new MH
1	Task 3: Carriers	Tas	sk 4: Advanced Characterization
approaches • Ad • Priorities for liquid organic • Bio	tectic systems as carriers Plasmon lsorbents as carriers release oinspired carriers Heteroly talyst stability and activ	tic cleavage • PCT • Adva	temp PCT system • Neutron/synchrotron calorimetry and ATR DRIFTS nced NMR
Task 5: Seed	ling Support	Та	isk 6: Data Hub
	HyMARC Individu	ual Projects to Date	
PROJECT TITLE			LOCATION
Development of Magnesium Boride Etherates as Hydrogen Storage Materials			University of Hawaii at Manoa
Electrolyte Assisted Hydrogen Storage Reactions			Liox Power, Inc.
Optimized Hydrogen Adsorbents via Machine Learning and Crystal Engineering			University of Michigan
ALD (Atomic Layer Deposition) Synthesis of Novel Nanostructured Metal Borohydrides			National Renewable Energy Laboratory
Methane and Hydrogen Storage with Porous Cage-Based Composite Materials			University of Delaware
Optimal Adsorbents for Low-Cost Storage of Natural Gas: Computational Identification, Experimental Demonstration, and System-Level Projection			University of Michigan
Metal-Organic Frameworks Containing Frustrated Lewis Pairs for Hydrogen Storage at Ambient Temperature			University of South Florida
Heteroatom-Modified and Compacted Zeolite-Templated Carbons for Gas Storage			Montana State University
Developing a New NG Super-Adsorbent Polymer (NG-SAP) for a Practical NG Storage System with Low Pressure, Ambient Temperature, and high Energy Density			Penn State University
Uniting Theory and Experiment to Deliver Flexible MOFs for Superior Methane (NG) Storage			University of South Florida
Hydrogen Release from Concentrated Media with Reusable Catalysts			University of Southern California
Theory-Guided Design and Discovery of Materials for Reversible Methane and Hydrogen Storage			Northwestern University
High Capacity Step-Shaped Hydrogen Adsorption in Robust, Pore-Gating Zeolitic Imidazolate Frameworks			Colorado School of Mines
A Reversible Liquid Hydrogen Carrier System Based on Ammonium Formate and Captured CO2			Washington State University
Development of Magnesium Borane Containing Solutions of Furans and Pyrroles as Reversible Liquid Hydrogen Carriers			University of Hawaii at Manoa
Developing a Novel Hydrogen Sponge with Ideal Binding Energy and High Surface Area for Practical Hydrogen Storage (project complete)			Penn State University
Fundamental Studies of Surface-Functionalized Mesoporous Carbons for Thermodynamic Stabilization and Reversibility of Metal Hydrides (project complete)			University of Missouri-St. Louis
"Graphene-Wrapped" Complex Hydrides as High-Capacity, Regenerable Hydrogen Storage Materials (project complete)			Argonne National Laboratory
Super Metallated Frameworks as Hydrogen Sponges (project complete)			University of California, Berkeley
Fluorinated Covalent Organic Frameworks: A Novel Pathway to Enhance Hydrogen Sorption and Control			National Renewable Energy Laboratory

Isosteric Heats of Adsorption (project complete)