

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Hydrogen and Fuel Cells Update

Sunita Satyapal, Director – Fuel Cell Technologies Office

Transportation Research Board Subcommittee Meeting International Aspects of Transportation Energy Subcommittee, ADC70(1) Washington DC – January 10, 2018

2016 Global Shipments – Trends

Total power (in MW) shipped by application				Total power (in MW) shipped by fuel cell chemistry				
	Growth in Transportation				Growth in PEMFC			
600				600				
500				500				MCFC
400			Transportation	400				SOFC
300				300			MOEO	
200	Transportation	Transportation		200			SOFC	PEMEC
100	Stationary	Stationary	Stationary	100	M S PE	ICFC OFC EMFC	PEMFC	
	2014 Transportation	2015 Portable	2016 Stationary	∎ PEI	2 MFC <u> </u>	014 DMFC ■PA	2015 FC ■ SOFC ■ MC	2016 CFC ■ AFC ■ Other
500 MW fuel cell power shipped worldwide 500 fuel cell units shipped worldwide 51.6 Billion fuel cell units shipped worldwide 51.6 Billion					broximately Billion Il revenue			

For the first time in history....

Commercial fuel cell electric cars are here!

Nearlysold or leased3,500in the United States

No petroleum, no pollution
Refuels in minutes
More than 360 mi driving range
Over 60 mpgge

Life-Cycle Petroleum Use- Today's Cars

Low, Medium & High Petroleum Energy/Mile for 2015 Technology

Life-cycle Emissions- Today's Cars

Low, Medium & High Emissions/Mile for 2015 Technology

Market Segmentation Analysis Underway

FCEVs : Lower cost for large size classes and longer driving range

Year 2040: FCEV minus BEV-X Total Cost of Ownership							
Green shows where FCEVs are more cost effective							
	50 mi.	100 mi.	150 mi.	200 mi.	250 mi.	300 mi.	350 mi.
Two-seaters	\$0.05	\$0.01	-\$0.03	-\$0.07	-\$0.11	-\$0.15	-\$0.19
Minicompacts	\$0.05	\$0.02	-\$0.01	-\$0.04	-\$0.07	-\$0.10	-\$0.13
Subcompacts	\$0.05	\$0.02	-\$0.01	-\$0.04	-\$0.07	-\$0.11	-\$0.14
Compacts	\$0.04	\$0.01	-\$0.02	-\$0.05	-\$0.09	-\$0.12	-\$0.15
Midsize Cars	\$0.05	\$0.01	-\$0.03	-\$0.06	-\$0.10	-\$0.13	-\$0.17
Large Cars	\$0.04	\$0.01	-\$0.02	-\$0.06	-\$0.09	-\$0.12	-\$0.16
Wagons	\$0.05	\$0.01	-\$0.03	-\$0.07	-\$0.11	-\$0.15	-\$0.19
Pass Van	\$0.03	-\$0.01	-\$0.06	-\$0.11	-\$0.15	-\$0.20	-\$0.24
SUV	\$0.03	-\$0.02	-\$0.08	-\$0.14	-\$0.19	-\$0.25	-\$0.30
Std Pickup	\$0.14	\$0.11	\$0.07	\$0.04	\$0.01	-\$0.03	-\$0.06
Small Pickup	\$0.06	\$0.02	-\$0.02	-\$0.07	-\$0.11	-\$0.15	-\$0.19

U.S. DEPARTMENT OF ENERGY

OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

Heavy Duty Vehicle Applications Emerging- Examples

Fuel cell delivery and parcel trucks starting deliveries in CA and NY

Fuel cell buses in CA surpass 17M passengers

Industry demonstrates first heavy duty fuel cell truck in CA

Catalyzing Early Markets for Fuel Cells

New Applications Emerging- Examples

China

Germany

Eight Fuel Cell Trams

Capacity: 285 passengers Maximum speed: 70 km/hr.

Trains to operate in Germany in 2018

Capacity: 300 passengers Maximum speed: 140 km/hr.

U.S. Hydrogen Refueling Stations

Others with interest: Hawaii, Ohio, Texas, Colorado, South Carolina, and others

DOE Cost Status and Targets for R&D

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY FUEL CELL TECHNOLOGIES OFFICE

International Partnership for Hydrogen and Fuel Cells in the Economy (IPHE)

Provides a forum to share information and advance collaborative initiatives to accelerate the cost-effective transition to the integrated use of fuel cells and hydrogen in the economy.

Member partners are undertaking significant RDD&D and/or implementing policy initiatives to increase the use of fuel cells and hydrogen.

International Status and Targets- updates ongoing

	CARS		STATIONS*	
Country	Status	Target	Status	Target
		5,000 by 2020		100 by 2020
		50,000 by 2025		300 by 2025
CHINA	~60	1M by 2030	~10	1000 by 2030
EUROPEAN COMMISSION	~640 in Europe		~130	
FRANCE	~200	1,000 by 2020	~18	100 by 2019
				100 by 2019
GERMANY	~205		~42	400 by 2023
				160 by 2020 (70 MPa)
		40.000 by 2020		320 by 2025 (70 MPa)
		200.000 by 2025		100 additional at 35
JAPAN	~2,200	800,000 by 2030	~100	MPa
NETHERLANDS	~37	2,000 by 2020	~5	40 by 2020
		10,000 by 2020		100 by 2020
SOUTH KOREA	~500	630,000 by 2030	~25	520 by 2030
	~3,500 purchased			
UNITED STATES	or leased		~80	
TOTAL	~6,900		~345	

*Note - not all stations are retail

International Status and Targets- updates ongoing

Country	Bus Status	Bus Target	OTHER
CHINA	~100	Foshan City plans for 300 by 2018	~500 FC Trucks
EUROPEAN COMMISSION	~47		
FRANCE	0	0	~100 Forklifts
GERMANY			
JAPAN	~2	>100 by 2020	Small Stationary: over 223,000 (current) 5.3 million by 2030 (target)
NETHERLANDS	~12	100 by 2020	500 vans and 20 trucks by 2020 (target)
SOUTH KOREA			By 2030, 20% of energy will come from renewables
UNITED STATES	~26		>16,000 FC forklifts purchased
TOTAL	~175		

Fuel Cells and Hydrogen Joint Undertaking (FCH JU)

FCH JU - public private partnership supporting research, technological development and demonstration activities in fuel cell and hydrogen energy technologies in Europe. Its aim is to accelerate the market introduction of these technologies.

Budget: 1.3B from gov't and industry contribution

Objective: demonstrate role of FCH technology in Europe's future energy and transport systems

- 1. Transport: vehicles, train, maritime, & aviation
- Energy: H₂ production for energy storage & grid balancing from renewable electricity, FC systems for combined heat and power
- 3. Crosscutting Research: Standards, consumer awareness, manufacturing methods

(See: http://www.fch.europa.eu/page/vision-objectives)

Directive 2014/94/EU on Deployment of Alternative Fuel Infrastructure: Establishes a common framework of measures for the deployment of alternative fuels infrastructure in the EU

Source http://www.iphe.net/events/meetings/SC_24.html

Example: Scenario Planning in Europe

Scenario for EU Hydrogen Refueling Infrastructure

Germany- Cluster Strategy Example

Photo Credit: Office of Prime Minister of Japan and His Cabinet

Photo Credit: Office of Prime Minister of Japan and His Cabine

Iwatani Hydrogen Fueling Station Opening with Japan's Prime Minister (Apr, 2015) 1st station in the heart of Tokyo

U.S. DEPARTMENT OF ENERGY a

Hydrogen

OFFICE OF ENERGY AFFICIENCY & RENEWABLE ENERG

Japan Example- Stations before FCEVs

The Hydrogen Council formed in 2017

(\$) Investment	Estimated Impact			
Over \$10 billion	\$2.5 trillion			
towards hydrogen and fuel cells	in global revenues			
	30 million jobs			
Members	potentially created			
Over 20 companies	18% of total global			
Representing over \$1.3T in revenues and 2M jobs	energy demand			
More information: hydrogeneurope eu				

Developments in Other Countries- Examples

Canada:

- 20 FCEVs and 1 Bus
- One semi-public station (Powertech Labs in Surrey) + three under development (1 in Vancouver, 2 in the greater Toronto area)
- Over 500 forklifts in operation
- Transport Canada commissioned a study of the deployment of Fuel Cell trains in Canada to interview experts in industry, government, and academia, and to identify prerequisites to deploying hydrogen-powered railways ("hydrail") in Canada

India:

- FY 2016-17 funding: Rs.200 Million (\$US2.985Million) for hydrogen energy and fuel cell related activities
- 5 HRS are in operation; stationary PEM Fuel Cells being deployed to provide backup power for telecommunications towers; transportation focus on 3 wheelers

۲

South Africa:

- HySA Programme received funding of R81.4 million (~USD5.4 million) from government through the Department of Science and Technology. An additional amount of R34 million (USD2.2 million) was leveraged from other Programmes within the Department; combined total of USD7.6 million.
- First fuel cell powered forklift deployed in 2016.
- A multi-stakeholder forum involving government, industry, and the mining sector has been set up to develop a fuel cell roadmap for South Africa.

Sources: http://www.iphe.net/partners.html; http://www.nationaalwaterstofplatform.nl

H₂ at Scale Energy System

H₂ at Scale Energy System

Hydrogen Energy Storage is Scalable

Overview of Energy Storage Technologies in Power and Time

Image: Hydrogen Council

Hydrogen can be used to monetize surplus electricity from the grid, or remote, off-grid energy feedstock (e.g. solar, wind) for days to months.

DOE Global Energy Storage Database

China and the U.S. in the lead: # GW and # of projects

Source: DOE Office of Electricity and Reliability

H2@Scale: Nationwide Resource Assessment

Labs assess resource availability. Most regions have sufficient resources.

Red: Only regions where projected industrial & transportation demand exceeds supply.

Lab Pls: Mark Ruth, Bryan Pivovar, Richard Boardman, et al

Safety Resources and Models Available

H2Tools.org disseminates information on hydrogen safety

A Global Resource

More than 150,000 visits since 2015 - 50% are international Portions translated to Japanese, other languages underway

Hydrogen Risk Assessment Models (HyRAM) for risk analysis under various scenarios. Can be applied to develop:

- Conduct Quantitative Risk Assessment (QRA) to guide code requirements
- Assess Liquid Hydrogen Separation Distances

Increasing Awareness

Celebrate Hydrogen & Fuel Cell Day October 8 or 10/8 (Held on its very own atomic- weight-day)	Save the Date June 12-15, 2018 Annual Merit Review Washington, DC
1 1.008 Hydrogen	INCREASE YOUR
Learn more: energy.gov/eere/fuelcells	Download slide deck for free at at: energy.gov/eere/fuelcells/downloads /increase-your-h2iq-training-resource

28

Thank You

Dr. Sunita Satyapal Director Fuel Cell Technologies Office Sunita.Satyapal@ee.doe.gov

energy.gov/eere/fuelcells