

Hydrogen and Fuel Cell Program Overview

Dr. Sunita Satyapal, Director - Fuel Cell Technologies Office

2018 Annual Merit Review

Washington D.C. - June 13, 2018

Fuel Cell Shipments - Growth by Application

Source: DOE and E4Tech

Growth by Fuel Cell Type

Hydrogen and Fuel Cell Applications in the U.S.

U.S. Snapshot

Over 30 public stations open

- \$150M invested
- \$235M announced in 2018

200 stations planned

TX, MI, and others with interest

- Over \$27M invested
- 12-25 stations planned in the NE

^{*}Excludes recent announcement from CA to invest \$235M in electric vehicles

Electrolyzers

Global sales estimated at 100 MW/year*

*Courtesy of NOW, E4tech and partners: A collaborative effort to assess electrolyzer market potential

© Fraunhofer ISF

Automotive Executives Survey Results

First time fuel cell electric mobility ranks #1 trend among automotive executives

Strategy

R&D and innovation to enable affordable and reliable hydrogen and fuel cell technologies.

Increase focus on infrastructure.

DOE fuel cell system cost vs. targets

[†]Based on commercially available FCEVs [†]Based on state of the art technology

Note: Graphs not drawn to scale and are for illustration purposes only.

Hydrogen fuel cost vs. targets

Note: Graphs not drawn to scale and are for illustration purposes only.

Cost reduction strategies based on analysis

U.S. DEPARTMENT OF ENERGY

Key Program Early R&D Focus Areas - FY18

Fuel Cells

Hydrogen Fuel

- PGM- free catalysts
- Durable MEAs
- Electrode performance

- Production
- Delivery (including dispensing)
- Storage

PGM = Platinum group metals

MEA = Membrane Electrode Assembly

Program Mission and Strategies

Early R&D **Focus**

Applied research, development and innovation in hydrogen and fuel cell **technologies** leading to:

- **Energy security**
- **Energy resiliency**
- Strong domestic economy

Early R&D Areas

Hydrogen

Fuel

Infrastructure R&D

Fuel Cells

- PGM- free catalysts
- Durable MEAs
- Electrode performance

- PGM = Platinum group metals
- MEA = Membrane Electrode Assembly

- Production **Pathways**
- Advanced materials for storage
- Safety
- Manufacturing
- Delivery components
- Others

New in FY19 Budget Request

Enabling

Strategy: Leveraging National Labs and Partners

Consortium Approach

Multi-lab core capabilities with steady influx of new partners

Consortia Launched

Improved PEM fuel cells

PGM-free catalysts

Advanced H₂ materials storage

Materials for renewable H₂ production

New Consortium: H-MAT

A B

EMN: A Platform for Accelerated Materials R&D

Research Capabilities
& Core Principles
guiding EMN

Technical Accomplishments

DOE Program Impact - Examples

Innovation

Approx. H₂ and fuel cell patents enabled by FCTO funds

Approx.

35% of H₂ and fuel cell patents

come from National Labs

Market Impact

More than

Technologies

commercialized by private industry

with potential

to be commercial in the next 3-5 years

can be traced back to FCTO R&D

Examples of Progress enabled by DOE FCTO in the last decade

Reduced cost 60%

Quadrupled durability

Cut electrolyzer costs 80% **H2 Production** R&D

Leverage Private Sector to Accelerate Lab IP to Market

U.S. DEPARTMENT OF ENERGY

Examples: R&D 100 Awards and more

Science Paper (LANL, ORNL)
Active site(s) in
PGM-free Fe-N-C

Ordered core (PtCo) remains intact even after 30K cycles (AST) (LANL, Brown University, ORNL)

Journal of the Electrochemical Society: Focus Issue on PEM Fuel Cell Durability
Guest Editors: Jean St-Pierre, Debbie Myers, Rod Borup, over 40 papers, many FC-PAD authors

Focus Areas

Emphasize highthroughput + modeling for catalyst R&D

Increase focus on innovative membranes

HydroGEN: High-Impact Computational Research in Catalysis

nature energy

ARTICLES

PUBLISHED: 31 JULY 2017 | VOLUME: 2 | ARTICLE NUMBER: 17127

Self-optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution

Yuanyue Liu^{1†‡}, Jingjie Wu^{1‡}, Ken P. Hackenberg^{1‡}, Jing Zhang¹, Y. Morris Wang², Yingchao Yang¹, Kunttal Keyshar¹, Jing Gu³, Tadashi Ogitsu², Robert Vajtai¹, Jun Lou¹, Pulickel M. Ajayan¹, Brandon C. Wood²* and Boris I. Yakobson¹*

Steering Committee Member (Tadashi) owns a FCEV and chooses a unique license plate

HydroGEN: High-Impact Research in Photoelectrochemistry

Achieving Record Performance
NREL set new record with III-V
semiconductor PEC tandem cell:
3 Nature Energy publications.

nature nature energy nature energy Printed Assemblies of GaAs Photo with Decoupled Optical and React for Unassisted Solar Water Splittin A Graded Catalytic-Protective and Stable Water-Splitting Pho Direct Solar-to-Hydrogen Conversion via Inverted Metamorphic Multijunction Semiconductor Architectures

Addressing Benchmarking Needs
Technology advancement by
publishing standards, protocols
and reviews.

PEC World Record Benchmarked at >16% STH

Technology Standards to Facilitate Research Progress

Focus Areas

Emphasis on water-splitting

Raising the Tide:
R&D Test Protocols for
Water-Splitting

HyMARC Advanced Hydrogen Storage Materials

Provides **foundational understanding** of thermodynamics and kinetics to advance solid-state hydrogen storage materials

Delivers community tools and capabilities:

- High-throughput materials screening
- Surface, bulk, soft X-ray, synchrotron
- Probing nanoscale phenomena

Theory, simulation, & data

Controlled synthesis Hoo Hoo Metal hydride narroparticle

Focus Areas

Adding H₂ Carriers R&D to HyMARC

Example of Innovation- potential for heavy duty?

Cryo-compression can offer densities higher than liquid hydrogen

ANL analysis (preliminary) shows potential for:

90-200% storage capacity increase

25% less cost (at 5,000 units/yr)

46% less carbon fiber composite

Potential Opportunities for Larger Vehicles/Long Range

FCEVs: Lower cost for large size classes and longer driving range

Year 2040: FCEV minus BEV-X Total Cost of Ownership Green shows where FCEVs are more cost effective

	50 mi.	100 mi.	150 mi.	200 mi.	250 mi.	300 mi.	350 mi.
Two-seaters	\$0.05	\$0.01	-\$0.03	-\$0.07	-\$0.11	-\$0.15	-\$0.19
Minicompacts	\$0.05	\$0.02	-\$0.01	-\$0.04	-\$0.07	-\$0.10	-\$0.13
Subcompacts	\$0.05	\$0.02	-\$0.01	-\$0.04	-\$0.07	-\$0.11	-\$0.14
Compacts	\$0.04	\$0.01	-\$0.02	-\$0.05	-\$0.09	-\$0.12	-\$0.15
Midsize Cars	\$0.05	\$0.01	-\$0.03	-\$0.06	-\$0.10	-\$0.13	-\$0.17
Large Cars Small Station	\$0.04	\$0.01	-\$0.02	-\$0.06	-\$0.09	-\$0.12	-\$0.16
Wagons	\$0.05	\$0.01	-\$0.03	-\$0.07	-\$0.11	-\$0.15	-\$0.19
Pass Van	\$0.03	-\$0.01	-\$0.06	-\$0.11	-\$0.15	-\$0.20	-\$0.24
suv	\$0.03	-\$0.02	-\$0.08	-\$0.14	-\$0.19	-\$0.25	-\$0.30
Small Pickup	\$0.06	\$0.02	-\$0.02	-\$0.07	-\$0.11	-\$0.15	-\$0.19

Preliminary DOE Market Segmentation Study

More liquid stations planned

Safety R&D Accomplishments enabling Infrastructure

Tunnel Safety R&D and Modeling

Relief vent fire doesn't have a significant impact on tunnel structure elements

Validation of release models

First ever nearfield measurement and validation of temp., concentration and velocity of cryogenic plumes at 50K

Infrastructure R&D related progress- Examples

LANL, LLNL, and H2Frontier R&D 100 award for H2 safety sensor (available for commercialization)

LANL contamination detector (HCD) to alert - in real time - fuel station operator if conditions for potential poor hydrogen fuel quality exist.

Vision

H2@Scale: Enabling affordable, reliable, clean and secure energy across sectors

H₂@Scale System

41

H₂@Scale: Linking Natural Gas, Electric and H₂ Grids

Versatility

Volume

Value Proposition

The Duck Curve 101 - Example

Total Load (demand)

Load (net) on commercial utility grid (duck belly forms)

Solar Production

The Duck's belly is getting bigger

Two Concerns:

- Low Net Load:

 flexibility to reduce
 baseload
 generation
 resources is limited
 - High Ramp Rates

 in Evening:
 flexibility of other
 generation to ramp
 up is limited

Can be addressed by

Lab testing shows value of electrolyzers for ancillary services

First Ever Validation of Frequency Regulation with Electrolyzers

Lab testing shows dynamic response within seconds and potential for grid services

Scale: Simple Example

U.S. DEPARTMENT OF ENERGY

How much hydrogen for 1 car?

12,000 miles per year = 200 kg or 0.2 tonnes 60 miles per kilogram

per year per year

How much hydrogen for many cars?

Refineries: Where is the H₂ demand today?

Ammonia: Where is the H₂ demand today?

Ammonia & Refineries and Potential H₂ Demand

Plus demand from synthetic fuel production...

Hydrogen Demand Potential

Nearly 30 million metric tons of potential hydrogen demand in the U.S.

H₂@Scale: Value to industrial processes?

Electrical power plant cooling

- Over 16,000 H₂ cooled generators worldwide
- Less delivery logistics, inventory management,
 1-2 yr payback and improved efficiency
- Potential \$2B addressable market

Source: Proton

Iron Refining, Steel manufacturing

- More energy efficient when hydrogen used as reductant at high temperatures
- Potential annual savings of over \$100,000 for a 100,000 ton/year plant

Source: EERE Advanced Manufacturing Office, Berry Metal

H₂@Scale: Enabling renewable energy transport?

Where we find abundant solar and wind energy

H₂@Scale: Enabling renewable energy transport?

Where we find abundant solar and wind energy

...and deliver it or co-locate distributed generation with demand for certain applications

Preliminary analysis underway to guide future plans

Strategy: Partnerships to enable H₂@Scale

Early- Stage R&D

Demonstration,
Deployment &
Commercialization

H₂@Scale Consortium

H₂@Scale Stakeholder Feedback – Examples

2016 Session at Intermountain Energy Summit

Idaho Falls, ID

2017 Session at Fuel Cell Seminar Long Beach, CA

Examples of additional presentations:

- Utah (2017)
- Michigan (2017)
- Minnesota (2017)
- Germany (2017, 2018)
- Japan (2018)

Hundreds of stakeholders engaged 6 DOE Offices engaged

(EERE, FE, NE, OE, SC, ARPA-E)

Planned: 2018 Kickoff Chicago, IL

Control

**Control

Planned: 2018 AMR

Washington, D.C.

2017 Workshop Houston, TX

2016 Workshop

Golden, CO

H₂@Scale R&D Lab Capabilities – Examples

Safety and Infrastructure R&D

H₂@Scale – Lab CRADAs

- Leverages Lab capabilities and expertise to address challenges- materials R&D, analysis, safety R&D, etc.
- Round 1 in 2017.

CRADA = Cooperative Research and Development Agreement SPP- Strategic Partnership Project ('Work for Others')

H₂@Scale 2017 CRADA call selections

Energy Systems Integration R&D, NREL Coordinating with INL, SNL and other labs For H2@Scale

U.S. DEPARTMENT OF ENERGY

Example of End Use & Industry Partnership with Labs

Production of natural gas using H₂

- Utilizes H₂+ CO₂ and salts to generate pipeline quality natural gas (> 97% CH₄)
- Biocatalyst used in the process -Methanothermobacter thermautotrophicus
- Industry and lab partners:
 Southern California Gas
 Company, NREL and Electrochaea

Biomethanation Process:

 $CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$

NREL Fuel Cell Data Center

First time automotive fuel cell is integrated to a data center

H₂@Scale Future Plans: Focus Areas

MAKE

Increased Low Cost Hydrogen Production

MOVE

More Efficient
Hydrogen
Transmission

USE

Low Cost Value-added Applications

STORE

Improved Bulk Storage Technologies

August 1 H2@Scale Kickoff **Meeting Planned** Chicago Roadmap Planned

U.S. DEPARTMENT OF ENERGY

The H₂ and Fuel Cells Program spans other DOE offices

DOE Program Funding

DOE-wide Hydrogen and Fuel Cells Funding¹

Office	FY 2017	
	(\$ in thousands)	
EERE	101,000	
ARPA-E	47,000	
Science	22,000	
Fossil Energy	30,000	
Nuclear	2,000	
Total	202,000	

EERE – Fuel Cell Technologies Office

Key Activity	FY 2017	FY 2018
	(\$ in thousands)	
Fuel Cell R&D	32,000	32,000
Hydrogen Fuel R&D	41,000	54,000
Systems Analysis	3,000	3,000
Technology Acceleration	18,000	19,000
Safety, Codes and Standards	7,000	7,000
Total	101,000	115,000

 $^{^{\}rm 1}$ 2017 DOE Hydrogen and Fuel Cells Program Annual Progress Report

Coordination across Offices- Examples

DOE/EERE AMO

- Prototyping of emerging NG reforming options
- Innovative manufacturing for electrolyzer systems, R2R
- WBS institute: power electronics for H₂ BOP

DOE/EERE BETO

- Bio-waste-stream utilization options for H₂
- H₂ options for bio-fuel synthesis

DOE/EERE SETO

- Concentrator BOP for solarthermochemical H₂
- CSP-based solar NG reforming
- Solar to fuels

DOE/EERE Wind

 Wind-electrolysis integration R&D

DOE/EERE FCTO

Foundational Early-Stage R&D and H2@Scale

- Hydrogen production, delivery and storage R&D; fuel cell R&D (PEM, MCFC, PAFC, DMFC, etc.- non SOFC)
- Consortia on hydrogen production, storage, fuel cell catalysts, H2@Scale
- Technology acceleration (manufacturing R&D, technology validation, market transformation, safety codes and standards)
- Infrastructure R&D
- Systems analysis to guide R&D

NSF

 Academia-based fundamental research relevant to Hydrogen and Fuel Cell R&D (coordination with FCTO consortia)

NIST, DOT DOD, NASA, etc.

Examples: Standards in H₂ materials & services; next-generation military and space, buses, rail, marine, etc. applications

DOE/SC

- Fundamental processes of energy & matter relevant to H₂ manipulations
- Synergies with EFRCs & ongoing projects

DOE/FE

 Innovative large-scale coal and NG H₂ options + SOFC

DOE/NE

 Integrated and hybrid systems for nuclear H₂

DOE/OE

H₂ for energy storage & grid ancillary services

DOE/ARPA-E

 Innovative and disruptive concepts related to hydrogen and fuel cells

ARPA-E Hydrogen and Fuel Cells Activities

ARPA-E Programs in Fuel Cells/Electrolyzers for Energy Conversion and Storage

Online Resources - we need your help!

Spread the word on H₂ Safety Lessons Learned!

Share at regular team meetings

Provide feedback to FCTO and stakeholders

Find lessons learned at H2tools.org

Collaboration: Announcing New H₂ Safety Partnership

Leverages new partnership to promote collaboration on safety

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

IPHE: International Partnership for H₂ and Fuel Cells in the Economy

- Share information on H₂ and fuel cells, lessons learned, best practices
- Increase international collaboration to accelerate progress

U.S. elected as Chair

May 2018

Launched 2003 and includes 18 countries and the European Commission

Save the Date

Thank You

Dr. Sunita Satyapal

Director
Fuel Cell Technologies Office
Sunita.Satyapal@ee.doe.gov

energy.gov/eere/fuelcells

DOE Collaboration: H₂ & Fuel Cell Working Group

DOE Program Managers collaborate on hydrogen and fuel cell activities

Points of Contact for Member Offices

Advanced Research Projects Agency – Energy (ARPA-E)

Paul Albertus (IONICS, REBELS)

Paul.Albertus@hq.doe.gov

Grigorii Soloveichik (REBELS, REFUEL)

Grigorii.Soloveichik@hq.doe.gov

David Tew (INTEGRATE)

David.Tew@hq.doe.gov

Office of Fossil Energy

Steven Ross

Steven.Ross@em.doe.gov

Shailesh Vora (NETL)

Shailesh.Vora@netl.doe.gov

Office of Science

John Vetrano

John.Vetrano@science.doe.gov

Office of Energy Efficiency and Renewable Energy

Sunita Satyapal

Sunita.Satyapal@ee.doe.gov

Office of Nuclear Energy

Martha Shields

Martha.Shields@nuclear.energy.gov