U.S Department of Energy Hydrogen and Fuel Cells Program

2015 Annual Merit Review and Peer Evaluation Meeting

Crystal City, VA June 8, 2015

Dr. Sunita Satyapal

Director
Fuel Cell Technologies Office
U.S. Department of Energy

Energy Policy Act of 2005 (Title VIII)

Program goals include:

"To enable a commitment by automakers *no later than year 2015* to offer safe, affordable, and technically viable hydrogen fuel cell vehicles in the mass consumer market"

FCEVs are on U.S. Roads Now!

Recently Announced Publicly

Available for commercial sale in the US during late 2015

Toyota Mirai Fuel Cell Vehicle

~10 public retail H₂ stations 100 stations planned in CA Plans underway in Northeast, Hawaii

Now Leasing...

In Auto Shows...

OEMs bringing fuel cells vehicles to showrooms and driveways.

Toyota, Hyundai, Honda, GM, Daimler, Ford, Nissan, BMW, VW, and others!

FCEV Ride-n-Drive at DOE Headquarters

Click to see video

- Budget
- Highlights
- Future Plans

Hydrogen & Fuel Cells Budget

	FY 15	FY 15	FY 16	
Key Activity	(\$ in thousands			
	Request	Approp.	Request	
Fuel Cell R&D	33,000	33,000	36,000	
Hydrogen Fuel R&D ¹	36,283	35,200	41,200	
Manufacturing R&D	3,000	3,000	4,000	
Systems Analysis	3,000	3,000	3,000	
Technology Validation	6,000	11,000	7,000	
Safety, Codes and Standards	7,000	7,000	7,000	
Market Transformation	3,000	3,000	3,000	
NREL Site-wide Facilities Support	1,700	1,800	1,800	
Total	\$92,283	\$97,000	103,000	

Office	FY 2015
EERE	\$97M
Basic Science ²	~\$20M
Fossil Energy, SOFC	\$30M

FY 2015 DOE Total: **~\$150M**

Number of Recipients funded from 2008-2015			
Industry	>110		
Universities	>100		
Laboratories	12		

¹Hydrogen Fuel R&D includes Hydrogen Production & Delivery R&D and Hydrogen Storage R&D ²Estimated from FY14 appropriation

More stable R&D funding requests and appropriations in recent years > 20 new projects including 11 new Incubator projects (2014-2015)

DOE Activities Span from R&D to Deployment

1.

Research & Development

2.

Demonstration

Deployment

FCEV Demo

• >215 FCEVs, 30 stations, 5.7M miles traveled

World's first tri-gen station

Forklifts, back-up power, airport cargo tugs, marine APU, buses, mobile lighting

Savings from Active Project Management

at high volume

*\$280/kW low volume

More than

last

DOE Impact- H₂ and Fuel Cells

Commercialization

Jobs from commercial products and ARRA

1,400 jobs created or sustained

Commercial Products- Examples

Hexagon Lincoln's TITAN tube trailers

Plug Power GenDrive FCs

3M Cathode Catalysts

Proton's PEM Electrolyzer

DOE Cost Targets and Status

Key Challenges- Examples

- PGM loading
 - Catalyst and membrane durability
- Electrode performance and durability
- Efficiency and Reliability
- Feedstock and Capital Costs
- Compression, Storage and Dispensing (CSD) Costs

conversion

Composite/resin materials

Carbon fiber precursors and

6/15/2015

- Composite/resin materials
- BOP and assembly costs

Techno-Economic Analysis Guides R&D Portfolio

Fuel Cell Technologies Office | 10

Bipolar Plates Membranes BOP

MEA Frames/Gaskets **GDLs**

Focusing on...

Low and Non PGM Catalysts, Alkaline **Membranes**

H₂ Station

Storage Cooling **Dispensing** Other

Advanced Compression **Alternate Approaches**

BOP/Assembly Other processing Resin

Low Cost Carbon Fiber (CF) **Long term Materials**

Approaches

Highlights

Fuel Cell Highlights: Nanosegregated Catalysts

Current Density (mA/cm2)

V. Stamenkovic, P. Yang, D. Myers, and coworkers, ANL, LBNL, LANL Collaboration with BES

Nanoframe catalysts showed 3X mass activity of Pt/C in low-loaded MEA

Fuel Cell Highlights: Advancing Capabilities

First Direct Imaging of 3D Morphology of Nafion

F.I. Allen, L.R. Comolli, A. Kusoglu, M.A. Modestino, A.M. Minor, A.Z. Weber, *ACS Macro Letters*, 4 (2015) 1-5 | DOI: 10.1021/mz500606

Phase-Separation with Hydration

A. Weber et al., LBNL

First Visualization of Ionomer Distributions

Ionomer distribution (Fluorine X-ray map) across full thickness of 5mm cathode catalyst layer (CCL) can be imaged

10-fold decrease in collection times

Developed Open-source application package for simulation of PEMFC performance and durability

Includes Pt dissolution & carbon corrosion

Source code available via Source Forge at:

www.sourceforge.net/projects/fcapollo

Tutorial: June 10, 4:15-6PM Gateway Salon J&K

Introduction to model, physics and reaction kinetics, the open source release, methods for access and use, and a general demonstration

D. Harvey, et al., Ballard

Catalyst
Specific Power
6.5 kW/g_{PGM}

Goal Met

Hydrogen Production & Delivery Highlights

Fuel Cell Technologies Office | 15

NSF/DOE MOU

Division of Chemical, Bioengineering, Environmental, and Transport Systems (CBET)

NSF 14-511: NSF/DOE Partnership On Advanced Frontiers in Renewable Hydrogen Fuel Production via Solar Water Splitting Technologies

New Projects in Solar/High T Water Splitting Joint with NSF

- The University of Toledo, Yanfa Yan
- Stanford University: Thomas Jaramillo
- **Rutgers University: Charles Dismukes**
- The University of Colorado at Boulder: Charles Musgrave

Computationally screened >1000 new compounds since 4/2015

Identified ~200 new redox materials compatible with high-efficiency flowing particle STCH reactor design

CU Boulder

Steel-Concrete

High-Pressure

Composite Vessel

Hydrogen Storage

(SCCV) for Stationary

Exceeded DOE 2015 cost target (\$900/kg) for stationary gaseous hydrogen storage by > 20%.

H₂ from Renewables Cost:

\$6.80/gge*

* From \$8.00/gge (2011, dispensed, untaxed)

On Track

High volume, projected cost

Hydrogen Storage Highlights

Cost Reduction of 700 bar H₂ Storage Systems

 Launched 5 new storage materials projects

Class I Forklift with Fuel Cell and Metal Hydride System

 Developed metal Hydride H₂ Storage for Forklifts (SBIR Phase II) to overcome cost and high P fueling issues (fuels at < 60 bar)

Hawaii Hydrogen Carriers LLC, SNL, SRNL, Hydrogenics, URH2, Greenway Energy

Reduce cost of 700-bar tanks:

15% cost reduction*

* vs. \$17/kWh (baseline)

On Track

High volume, modeled projected cost

Modeling and Online Tool Development for Stations

Fuel Cell Technologies Office | 17

H2FAST- H2 Financial Analysis Scenario Tool
Web-based online calculator (NREL)

HRSAM- Hydrogen Refueling Station
Analysis Model (ANL)

Station cost, optimized configurations and cash flow & ROI analyses to optimize financial viability of station options

Life Cycle Analysis of Water Use for Light Duty Vehicle Pathways

Fuel Cell Technologies Office | 18

Numbers represent mid-range values, the left half-bar the low range, and the right half-bar the high range- DOE FCTO, VTO, BETO, ANL

DOE as Catalyzer of Early Markets

Early Markets enable:

- Fuel cell cost reduction
- Robust supply base
- Emerging Infrastructure

Customer acceptance

Early Market
Application
Examples

World's First Fuel Cell Cargo Trucks at Memphis International Airport

facebook Pos

Post Stats:

More 180 shares than 240 likes

Over 45,000 people reached

World Record Set by Fuel Cell Electric Bus

AC TRANSIT FLEET

AC TRANSIT BUS

Operated for more than **19,500** hours

FTA Funding and Collaboration with DOE- NREL Data collection

Fuel Cell Engine Demonstrated Reliability for Transit Bus Fleet

- CSULA- First in U.S. to receive seal of approval for sale of H₂ Jan 2015
- New data collection projects with OEMs (Toyota, Hyundai, Honda, Nissan, Daimler, GM)
 - 2.4 million miles
 - >50% of FCEVs on road showed 50-55 mpgge fuel economy
- Determined causes for >2,900 maintenance events
- Developed safety and contaminant sensor technologies at LANL
- Developed and tested fuel cell power system for pier-side and auxiliary sea vessel power

Determined contaminant source (siloxane) & identified potential substitutes (e.g. PTFE-based grease can be suitable replacement with minimal effects)
Fuel cell system contaminants material screening database (NREL):

www.nrel.gov/hydrogen/system_contaminants_data/

H₂USA to address H₂ Infrastructure Challenges

Fuel Cell Technologies Office | 22

H₂USA

*Representative sample of member logos

Hydrogen Fueling Infrastructure Research Station Technology

Leveraging Expertise of National Labs

In Support of

H2 USA and tasked to deliver:

Outstanding Partnership Award

By the Federal Laboratory Consortium (FLC) for efforts toward deployment of hydrogen fueling infrastructure

Reference Station Design

✓ Report Delivered with DetailedStation Designs and Cost Estimates

Fuel Contaminant Detection

✓ Market Survey and Gap Analysis Complete

HyStEP Device

✓ Design Complete - Currently Under Construction

- H₂ Station Equipment Performance
 Device
- H₂First Inaugural Task
- HyStEP will help reduce time required to place H₂ stations in service

DOE's H₂FIRST project supports H2USA goals to address infrastructure

Safety Codes and Standards Highlights

H2Tools

Consolidated safety and knowledge resources into a central location, alongside newly added functionality and content

Safety Training for First Responders

Tracking interest in first responder training resources across the country, including along the northeast corridor

PNNL, CaFCP

PNNL

Going Forward

Recent FY15 DOE Funding Announcements

H-Prize: \$1 million competition for on-site home and community-scale H₂ fueling systems.

1st Year (due 10/15)

2nd Year (due 10/16)

Teams form and submit designs

Selection of finalists and testing

Technical and cost analysis to select winner

For more Information visit hydrogenprize.org

FY15 FOA- Up to \$35 Million

Research and Development:

H₂ production, low PGM fuel cell catalysts, H₂ dispensers, pipeline manufacturing R&D

Demonstration and Deployments:

Mobile refueling, plug-in fuel cell hybrid vehicle, technical assistance to communities deploying fuel cells

Fuel Cell Technologies Office | 27

Global Competitiveness Analysis including:

- Global Cost Breakdown
- Design for Manufacturing
- Value Stream Mapping

GLWN.50

Integrated Network of Regional Technical Centers

Located at

- 1. East Coast (CCAT)
- 2. Midwest at the OFCC
- 3. Central States at NREL's National Fuel Cell Technology Evaluation Center
- 4. West Coast (UC Irvine)

Activities (Examples)

- Hold supply chain exchanges
- Promote cooperation between suppliers & standardization of component specs

Fuel Cell and H₂ Opportunity Center

- Comprehensive online database
- Project activities include:
 - Encourage supplier engagement
 - Release and maintain public directory
 - Conduct outreach campaign (social media, etc.)

Emphasis on Tech to Market Activities with Labs

Increase Industry Contact

- Business-to-Business Product Theater (11 Labs)
- Manufacturing Road Show
- Small Business Vouchers, TTOs (SBIRs)

Listen to the Voice of the Customer

- Key Staff Exchange with stakeholders
- Engagement with companies

Develop
Technology
Transfer
Skills

- Business Plan Development Training
- Lab Corps

Increase Market Understanding

Improve Private Sector Relationships

Held T2M Event at FC Seminar, future plans at ECS (Oct. 2015)

Future Plans

Consortia Strategy

Multi-Lab Team: Lab Call to competitively select core for Consortium

1) Fuel Cells: FC-PAD

Fuel Cell Performance and Durability

2) Storage: Hy-MARC

Hydrogen Storage Materials Advanced Research Consortium

3) **Production: H2RENEW**

Hydrogen Production from Renewables

Future FOAs (subject to appropriations)

 Add Industry, University, Lab Projects (e.g. 2-4 yrs/project)

Potential Collaborations

Office of Science , Advanced Manufacturing Office, Relevant Offices and Other Agencies

Request for Information Planned, including:

- Gas clean up technologies (2014 workshop results)
- Early market opportunities
 - Targets for medium/heavy duty trucks
 - Co-locating CNG and H₂ stations/components
 - Fuel-to-you approaches (e.g. small-scale/"Peapod" delivery)
- Education and outreach gaps and needs
 - Workforce development, training, students, teachers, etc.

First Lady's and Dr. Jill Biden's Initiative: Joining Forces

Supporting veterans and their families in 3 areas:

Strong Commitment by the H₂ and Fuel Cells Community

Air Liquide and PDC committed to hiring veterans for 10% of their workforce

Two Fellowship Opportunities Available!

- Two Areas:
 - 1. Fuel Cells R&D
 - 2. H₂ Storage Materials
- Ph.D. is required, experience preferred
- 2 Year Fellowship
- Located in Washington, D.C.
- Health benefits and relocation expenses included

Apply now!

For Fuel Cells

https://www.zintellect.com/Posting/Details/1078

For H₂ Storage

https://www.zintellect.com/Posting/Details/1079

Fuel Cell Technologies Office | 33

R&D

Demonstration & Deployment

Accelerated Commercialization

- Pre-Competitive R&D
- USCAR, energy companies, EPRI and utilities

- Implementing Agreements
- 25 countries

State Partnership and Collaboration

- International Government Coordination
- 17 countries and European Commission

Hydrogen Fueling Infrastructure Research and Station Technology

 National Lab (SNL & NREL) led activities with industry to support H2USA Public-Private Partnership to enable infrastructure >40 partners

FCTO also collaborates with multiple Agencies including DOC, DOD, DOT, EPA, NASA, NSF, USDA, USPS, and State Governments

Recent Recognitions and Awards- Examples

Fuel Cell Technologies Office | 34

Rod Borup (LANL)

2015 Research Award by Energy Technology Division of the Electrochemical Society (ECS)

Jennifer Kurtz, Keith Wipke (NREL) and Daniel Dedrick (SNL)

2014 FLC Far West Regional Awards

Muhammad Arif (NIST)

NIST Fellow Honor

Jamie Holladay (PNNL)

Most-Downloaded Article from Science Direct

Adam Weber (LBNL)

2013 Presidential Early Career Award for Scientists & Engineers (PECASE), 2014 Charles W. Tobias Award, 2014 Kavli Fellow of the National Academy Sciences Award

Y. F. (John) Khalil (UTC)

The Institution of Chemical Engineers (IChemE) Senior Moulton Medal

Piotr Zelenay (LANL)

LANL Fellows Prize for Outstanding Research

Ian M. Robertson (U. of Wisconsin)

2014 ASM Edward DeMille Campbell Memorial Lectureship Award

Proton Onsite

2015 Presidential "E- Award" and New Electrochemical Technology (NET) Award

Dr. Branko Popov (U. of South Carolina)

2014 World's Most Influential Scientific Minds & Highly Cited Researchers by Thomson Reuters

Bill Cleary

Tribute from the Fuel Cell Technologies Office, Vehicle Technologies Office and Argonne National Lab

Thank You

Dr. Sunita Satyapal

Director

Fuel Cell Technologies Office

Sunita.Satyapal@ee.doe.gov

hydrogenandfuelcells.energy.gov

Fuel Cell Technologies Office | 37

	FY13-FY15		
State	Total	Industry, National Laboratories, Universitie	s, and Government Entities
	Funding		
California	\$34.7M	California Air Resources Board California State University, Los	Ardica Electricore
		Angeles CalTech	H2 Technology Consulting HRL
		Lawrence Berkeley National Laboratory Lawrence Livermore	Laboratories
		National Laboratory NASA Jet Propulsion Laboratory	J. Craig Venter Institute Materia
		Sandia National Laboratory Stanford University University of	Mercedes-Benz Research and
		California, Davis	Development, NA
		University of California, Berkeley	Quantum Technologies
Colorado	\$43.8M	Colorado School of Mines	University of Colorado, Boulder TDA
		National Renewable Energy Laboratory	Research
Connecticut	\$7.6M	Fuel Cell Energy Proton OnSite	United Technologies Research Center
District of Columbia	\$0.04M	U.S. Department of Transportation	
Delaware	\$0.1M	Ion Power	
Georgia	\$1.5M	CTE	
Hawaii	\$4.3M	University of Hawaii	
Idaho	\$2.2M	Idaho National Laboratory	
Illinois	\$22.3M	Argonne National Laboratory Illinois Institute of Technology	Gas Technology Institute Northwestern
NA	ĆE 204	Della di cara Arrada Danta a Calla a Marilia a da calla di cara	University
Massachusetts	\$5.2M	Ballard, now Avcarb Boston College Northeastern University	Giner Nuvera Fuel Cells
N. A. a. a. al	Ć4 CB4	Nietienel leetitute of Charles and Technology (NICT)	
Maryland	\$4.6M	National Institute of Standards and Technology (NIST)	RedOx Fuel Cells
Michigan	¢4.484	EnergyWorks Factor Found	W. L. Gore & Associates
Michigan	\$4.1M	Eaton Ford	General Motors
Minnesota	\$4.0M	3M	
Missouri	\$0.4M	University of Missouri, Columbia	
Nebraska	\$0.8M	Hexagon Lincoln	
New Jersey	\$0.2M	BASF	
New Mexico	\$20.7M	Los Alamos National Laboratory NASA	Sandia National Laboratory

FY13-FY15 Funding by State (FCTO)

State	FY13-FY15 Total Funding	Industry, National Laborator	Industry, National Laboratories, Universities, and Government Entities	
New York \$10.1M	\$10.1M	Brookhaven National Laboratory General Motors	H2Pump Mohawk Innovative Technologies	
North Carolina	\$0.5M	PPG		
Ohio	\$1.3M	Battelle	Midwest Optoelectronics	
Oregon	\$0.7M	Oregon State University		
Pennsylvania	\$1.6M	Penn State University Air Products and Chemicals Arkema	Dynalene PPG	
South Carolina	\$10.1M	Savannah River National Laboratory	University of South Carolina	
Tennessee	\$18.5M	Oak Ridge National Laboratory ORISE	FedEx Express	
Texas	\$1.8M	Southwest Research Institute		
Virginia	\$5.2M	Nanosonic Sprint	Strategic Analysis Wiretough Cylinders	
Washington	\$12.7M	Pacific Northwest National Laboratory	Innovatek	