

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Hydrogen and Fuel Cells Enabled through the U.S. Department of Energy

Dr. Sunita Satyapal, Director, Fuel Cell Technologies Office

ECS Meeting May 27, 2019 – Dallas, TX

The Beginning of the DOE Fuel Cell Program...

1970s A group from labs, government and industry met at Los Alamos to set the foundation for DOE fuel cell programs

Lab researchers taught scientists around the world how to fabricate fuel cell electrodes. Group from GM relocated to Los Alamos.

Lab Contributions

LANL: Ian Raistrick- 1988 Patent "...**represented a huge step forward** and became the foundation upon which virtually all subsequent research in platinum loading was based."¹

"...Mahlon Wilson and Shimshon Gottesfeld developed increasingly effective means of reducing platinum loading...eventually produced an MEA..." with only 0.12 to 0.17 mg/cm²

4-10 mg/cm²

0.12 to 0.17 mg/cm²

1. Source: Laboratory to Highway, p. 106 (2004)

Progress

DOE Program Impact - Examples

Fuel Cell Shipments - Growth by Application

Source: DOE and E4Tech

Fuel Cell Power Shipped (MW)

Source: DOE and E4Tech

Fuel Cell Passenger Vehicles Status

Example of a Commercially Available FCEV

Battery

The Mirai's nickel-metal hydride battery stores the energy that is recovered while decelerating, and also assists the fuel cell stack when you need more power during acceleration.

Hydrogen Storage Tanks

Two-high-pressure carbon fiber tanks store the hydrogen as fuel.

Fuel Cell Stack

The Toyota fuel cell stack features a compact size and produces the electricity that powers the Toyota Mirai.

Toyota Mirai

Fuel Economy: 66/66/66 comb. city hwy. Driving Range: 312 miles H₂ Tank Capacity: 5.0 kg

Power Control Unit

The PCU has two roles: managing

the power from the fuel cell stack

and the battery, and readying its

supply to the motor.

Vent

Large intake grills within the

vital ingredient, air, to the

Mirai's fuel cell stack.

front bumper deliver the car's

Hydrogen Infrastructure Status

Automotive Executives Survey Results

First time fuel cell electric mobility ranks #1 trend among executives

Source: KPMG Global Automotive Executive Survey 2018

Real World Applications & World's Firsts

Fuel cell delivery and parcel trucks starting deliveries in CA and NY

Photo Credit: FedEx

First fuel cell tow truck fleet at airport in Memphis

World's first fuel cell for maritime ports in Hawaii

Photo Credit: Sandia National Laboratories

More Real World Applications

Industry demonstrates heavy duty fuel cell trucks

Photo Credit: Toyota

Fuel cell powered lights at Super Bowl in CA

ZH2: U.S. Army and GM collaboration First of its kind

Photo Credit: General Motors

Fuel cell buses in California surpass 19M passengers

Photo Credit: NREL

Material Handling Equipment Applications

More than 25,000 forklifts

Over 19 million refuelings

Real World Applications

World's first 4-seater fuel cell plane takes off at German Airport

Fuel cells provided backup power during Hurricane Sandy in the U.S. Northeast

Hydrogen fuel cell trains in passenger service in Germany

Fuel cells for stationary backup power for cell phone towers

Fuel cells operating all over the U.S.

Fuel cells used for backup power in more than 40 states

Over 8,000 backup power units

deployed or on order

Source: DOE State of the States: Fuel Cells in 2016 Report

Over 240MW

in stationary

fuel cell power

installed

Telecom, Government, Railroad, Utility sites

Telecom, Government, Railroad sites Telecom and Government sites Government, Railroad, Utility sites

Government and Railroad sites

Telecom and Railroad sites

Telecom sites Government sites

Railroad sites Utility sites

AMFC Technology Status

Cellera Technologies, Caesarea, Israel

Shimshon Gottesfeld, CTO

ECS Meeting in SF November 1st 2013

Telecom pilot installation- April 2013

World's first AMFC pilot installation with local telecom operator

Other Examples from Shimshon

High- and Low-Power DMFCs (1999-2000)

80 W near-ambient DMFC stack for automotive applications: 30 cells, 45 cm² MEA, 1.8 mm per cell

Two-cell air-breathing 10 mW/cm² DMFC for portable electronics (LANL-Motorola collaboration)

235th ECS Meeting - Dallas, Texas, May 26-30, 2019

DOE Hydrogen and Fuel Cell Program

Program Mission and Strategy

H₂@Scale: Enabling affordable, reliable, clean, and secure energy across sectors

Hydrogen Clusters: Opportunities in Texas

Increased renewable (wind) capacity

H₂ delivery infrastructure is present

Increased interest hydrogen as an energy storage

World's largest salt cavern for hydrogen storage commissioned in TX in 2017

H₂@Scale: Nationwide Resource Assessment

Assessing resource availability. Most regions have sufficient resources.

Red: Only regions where projected industrial & transportation demand exceeds supply.

U.S. energy mix covers wide of energy sources

Note: Sum of components may not equal 100% because of independent rounding Source: U.S. Energy Information Administration. *Monthly Energy Review*. Table 1:3 and 10.1, April 2018, preliminary data.

Fuel Cell R&D

Fuel Cell Cost Improvements for Light Duty Vehicles

Fuel Cell Cost Status

- \$50/kW* for 100,000 units/year
- **\$45/kW*** for 500,000 units/year
- **\$181/kW**^{*} for 1,000 units/year
- \$210/kW⁺ for currently commercialized on-road technology at 1,000 units/year

Cost analysis is not adjusted to account for durability

* SA Inc., bottom-up analysis of model system manufacturing cost, high volume manufacturing with next-gen lab technology † SA Inc., bottom-up analysis of model system based on commercially available FCEVs

Durability Adjusted Cost Status

Coming soon: combined durability-system cost metric for state of the art light-duty vehicles

* SA Inc., bottom-up analysis of model system manufacturing cost, high volume manufacturing with next-gen lab technology

Challenges and Strategy

Durability <u>and</u> cost are the primary challenges to fuel cell commercialization and must be met concurrently Early-stage materials and components R&D to achieve low-cost, high-performance fuel cell systems

Membrane (1) Catalyst Layer (2) Gas Diffusion Layer (2) Internal Gasket (2) Bipolar Plates (2) Fuel Cell Car

Improvements in multiple components are required to meet targets

R&D portfolio focused on PEMFCs, but also includes longer-term technologies (e.g. AEMFCs) & higher temp fuel cells (e.g. MCFCs) for stationary applications

Application	Power (kW)	Cost (\$/kW)	Durability (h)	Performance
Light-duty vehicles	80	30 75* 120*	8,000 5,000 4,100	70% efficiency, $\leq 0.125 \text{ mg}_{PGM}/\text{cm}^2$ $\sim 0.35 \text{ mg}_{PGM}/\text{cm}^2$
Medium and Heavy-duty vehicles	160 to >360	60 92*	25,000	70% efficiency, ≤0.2 mg _{PGM} /cm ² 0.35 mg _{PGM} /cm ²
Stationary	1 to 1,000	1,000	80,000- 130,000 40,000-80,000	>50% electrical efficiency
Reversible (RFCs)**	1 to 1,000	1,250	5,000 cycles	>50% roundtrip efficiency

Green: target; black: lab-demonstrated tech; blue: on-road/installed tech

*Projected system cost for 100,000 units/year

**Technical targets under development

Strategic Analysis Guides Fuel Cell R&D Priorities

* PGM elimination mitigates US dependence on precious metal imports

MDV Cost Analysis Highlights R&D Needs

- Based on 2018 cost estimate for 160 kW_{net} system suitable for buses and medium-duty trucks
- High-volume manufacturing cost: \$92/kW_{net} (100,000 systems/year)

*Manufacturing volume: 100,000 systems/year

To be released: Heavy-duty fuel cell truck cost analysis

DOE Cost Status and Targets for R&D

*Based on commercially available FCEVs

¹Storage costs based on preliminary 2019 storage cost record.

[†]Range assumes current production from NG and delivery and dispensing

*Highest possible cost at high vol., assumes H2 from electrolysis at \$5/gge and delivery via pipelines and liquid tankers at \$5/gge

**Lowest possible cost at high vol., assumes H2 from SMR at \$2/gge and delivery via tube trailer at \$3/gge

Notes: Graphs not drawn to scale and are for illustration purposes only.

Strategy: Leveraging National Labs and Partners

Consortium Approach

Framework to Accelerate Progress

Multi-lab core capabilities with steady influx of new partners

Guiding Principles of EMNs

Data Management & Informatics

FCTO Strategic and Tactical Update

Lab-Based Consortia

Labs- Industry Bridge

- H2@Scale Consortium
- CRADAs
- SPPs (WFOs)
- L'Innovator
- Technology Commercialization Fund

Private Sector

- FOA projects
- SBIRs
- Prizes
- State funding
- Demos & Deployments
- Partnerships
- US National Roadmap (planned)

H₂ materials R&D, enable codes & standards, reduce regulatory barriers

Safety – Lessons learned, best practices, enable safe infrastructure

Examples of Applications

Strategy: Focus on Innovation

Electrochemical Hydrogen Compression (EHC)

Non-mechanical concepts are in early stages of research, but have potential for higher reliability than conventional reciprocating compressors.

How it Works

Electrical potential drives redox reactions and hydrogen permeation across cell membrane. Pressurized H_2 accumulates at the cathode. Catalysts disassociate and reconstitute H_2 Images courtesy of Giner

Recent EHC Accomplishment

Giner, Inc and collaborators reduced EHC electricity required for 100 to 350 bar by 50%

through novel membranes and stack designs Achieved 2kWh/kg

R&D Needs

- <u>Maintain</u> efficiency at 40X higher flow rates (up to 40 kg/hr) and >2X higher pressure (up to 875 bar)
- Address losses caused by: temperature rise, membrane resistance, and H₂ backflow
- Enhance conductivity through membrane and catalyst R&D.

Collaborators: NREL, RPI, and Gaia Energy Research Institute

RFC R&D Innovation Targets Low- and High-T Technologies

Low-T PEM Example:

Materials/component R&D to advance both fuel cell and electrolyzer performance

N. Danilovic et al., LBNL

Lab testing shows value of electrolyzers for ancillary services

First Ever Validation of Frequency Regulation with Electrolyzers

Collaboration &

Resources

Example of International Government Collaboration

The International Partnership for Hydrogen and Fuel Cells in the Economy

Enabling the global adoption of hydrogen and fuel cells in the economy

www.iphe.net

Working Groups: Education & Outreach Regulations, Codes, Standards & Safety

Find IPHE on Facebook, Twitter and Linkedin Follow IPHE @The_IPHE

Collaboration: New H₂ Safety Partnership

New global partnership to promote collaboration on safety

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

www.aiche.org/chs

Help Us to Spread the Information

Celebrate National Hydrogen & Fuel Cell Day October 8 or 10/8

(Held on its very own atomic- weight-day)

Give an *"Increase your H2IQ"* presentation in your community

INCREASE YOUR

Download for free at: <u>energy.gov/eere/fuelcells/downloads/</u> increase-your-h2iq-training-resource

Learn more at: energy.gov/eere/fuelcells

Hydrogen and Fuel Cell Day Challenge on Oct 8.

- Builds on H2 Challenge in Netherlands
- Teams drive 10.08 hours and score points along the way
- Start in Japan, continue in Europe and finish in the U.S.
- Players share experience in social media

DOE-wide STEM Initiative

Hydrogen and Fuel Cells Career Map Online

Sectors Identified:

- Research and Development
- Engineering and Manufacturing
- Installations, Operations, and Management
- Communications, Training, and Outreach

Visit online

www.energy.gov/eere/fuelcells/education

generators, internal combustion engines, and steam and gas turbines, as well as power-using machines, such as refrigeration

and air-conditioning systems.

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY FUEL CELL TECHNOLOGIES OFFICE

Postdoc & Postmasters Fellow Positions Available

Applicants selected will be mentored by EERE Fuel Cell Technologies Office staff and be part of the team.

- Hydrogen Fuels R&D
- Fuel Cells R&D

FCTO Contacts:

Donna.Ho@ee.doe.gov

Nancy.Garland@ee.doe.gov

- Infrastructure and Systems R&D
 - Technology Acceleration
 - Safety, Codes & Standards
 - o Systems Analysis

FCTO is currently seeking 4 candidates:

- 1 for Fuel Cells R&D
- 2 for Technology Acceleration
- 1 for Safety, Codes & Standards

To apply: https://www.zintellect.com/Opportunity/Details/EERE-STP-FCT-2019-1800

Peter.Devlin@ee.doe.gov

Laura.Hill@ee.doe.gov

Jason.Marcinkoski@ee.doe.gov

~2000 to Today

Today to 2040

In Recognition of your Invaluable Contributions to Fuel Cell Science and to the United States Department of Energy

Thank you

Dr. Sunita Satyapal

Director Fuel Cell Technologies Office <u>Sunita.Satyapal@ee.doe.gov</u>

energy.gov/eere/fuelcells