HybriDrive® Propulsion System

Cleaner, smarter power for transit

DOE/FTA Fuel Cell Research Priorities Workshop

Washington, DC 7 June 2010

Bart W. Mancini
Sr. Principal Systems Engineer
BAE Systems

Ph: 607-770-4103 bart.mancini@baesystems.com

Overview

- BAE Systems FC Experience / Deployments
- Technology gaps/barriers to full commercialization of fuel cell buses
 - Well-to-wheels energy efficiency and emissions
 - Cost metrics
 - Bus integration issues
- Fuel cell bus R&D needs
- Future plans

BAE Systems FC Experience / Deployments

- 1998 Georgetown/FTA/DOE Fuel Cell Bus #1 (still serviceable)
 - UTC 100 kW Phosphoric Acid FC using on-board Methanol Reformate, Hybrid propulsion & Electric accessories
- 2000 Georgetown/FTA/DOE Fuel Cell Bus #2 (retired)
 - Ballard 120 kW PEM FC on-board Methanol Reformate, Hybrid propulsion & Electric accessories
- 2008 CalStart/FTA Fuel Cell APU Demonstration (this Summer)
 - Hydrogenics 2 x 12 kW FC APU units using compressed H₂, supplementing ICE-Hybrid propulsion & Electric accessories
- 2010 Sunline/FTA American Fuel Cell Bus (initial Design phase)
 - Ballard 130 kW PEM FC using compressed H₂, Hybrid propulsion & Electric accessories

Technology Gaps & Barriers to

Full Commercialization of

Fuel Cell Buses

Well-to-Wheels Efficiency

- Battery EV is best at 40% from NG or 22% from Coal
- Diesel ICE is best fuel burner at 26%
- Fuel Cell with H₂ from reformed NG 24%
- CNG ICE is 22%
- Fuel Cell with H₂ from electrolysis has efficiency at 6%-11%

What Does Zero Emission Vehicle Really Mean?

- True ZEV only if Hydrogen is industrial "waste product" (relatively insignificant amount) or if electric energy source for electrolysis is "clean" Zero Emission.
 - 30% US electricity is "clean": Nuclear, Hydro, Wind, Solar, Geothermal, etc.
 - Only 10% if Nuclear is not considered "clean"
- Otherwise, emissions same as electric generation fuel source or reformate fuel source
- Electrolysis will need to be conducted at off-peak times and stored so as not to over tax an already stressed daytime power generation network

Cost Metrics

Architecture	Vehicle CO ₂ Reduction	Bus Premium** ∆ to \$325k Dsl	\$ per % CO ₂ Reduction	Infrastructure Requirement
Propulsion Fuel Cell	100%	\$1,475k	\$14.8k/%	H ₂
Battery EV	100%	\$575k	\$5.8k /%	Electric
FC APU [Dsl (CNG)]	50% (68%)	\$375k (\$425k)	\$7.5k/% (\$6.3k/%)	H2 (H2 & CNG)
Hybrid /EA [Dsl (CNG)]	33% (48%)	\$225k (\$275k)	\$6.8k/% (\$5.7k/%)	No (CNG)
Conv / EA [Dsl (CNG)]	15% (33%)	\$50k (\$100k)	\$3.3k/% (\$3.0k/%)	No (CNG)
CNG Conventional	18%	\$50k	\$2.8k /%	CNG

^{**} Bus Only, Not including H₂/CNG fueling or battery charging infrastructure, or battery/FC replacements

- Hybrid/EA w/CNG is optimal for carbon reduction & fueling infrastructure maturity
- FC-APU provides substantial CO₂ reductions at affordable (capital) & sustainable (O&M) costs
- Conventional w/Electric Accessories and/or CNG fuel most cost effective approaches
- Battery EV looks good, but range & performance is still too limited to be broadly viable
- Propulsion FC, high initial cost plus significant O&M (FC replacements over 12 yr /50khr life)

FC- APU Architectures are currently Most Economically Viable Path to Emission Reductions and Mass FC Commercialization

Propulsion Fuel Cell Vehicle Integration Challanges

- Weight / Passenger Capacity & Cost
 - Hydrogen Storage
 - Long Range, High Endurance, sub-optimal accessory systems and sub-optimal propulsion power path drive large and heavy fuel capacity
 - Cooling System
 - Low FC coolant temps dictate large / heavy and higher power consumption cooling systems
 - FC / including Balance of Plant
 - Go-Anywhere capability, sustained highway speeds, high-speed gradeability drive larger heavier fuel cells, more cooling & air handling
- Efficiency and Power Processing
 - DC-Buss voltage dynamics & management
 - Propulsion fuel cell voltage is same as hybrid propulsion 600 Vdc typ.
 - They cannot co-exist on same DC-Link without powerful, heavy & costly conversion/regulation devices in-between, hampering efficiency
 - Slow FC time constant limits regen energy recovery potential & efficiency

Summary of Gaps / Barriers to Full Commercialization

- FC Buses need to have a lower procurement cost to support purchase in commercial quantities.
 - Example: Hybrid buses currently pose acquisition challenges at ~\$500k-\$600k.
- Lifetime FC planned stack replacement costs need to be reduced
 - Example: Hybrid buses currently have a planned mid-life (6-year) battery replacement at ~\$40k that is taxing TAs O&M budgets.
- FC Bus weight reductions need to be addressed (thru efficiency & less tankage)
 - FC & balance of plant is good, about equivalent to diesel engine
 - Propulsion power arrangement optimization & FC response
 - Accessory loads, including balance of plant, optimization
- Unless above challenges are addressed, realizing acquisition & operation of FC buses in full commercial scale will remain a difficult challenge.

FC- APU Architectures are currently Most Viable Path: Economically, Technically, and Operationally to Mass FC Commercialization

R&D Needs – Architectural & Organizational

- Develop optimized design guidelines for "Cost Effective" propulsion architectures
 - Appropriate sizing & proper application of power sources "Prime" and "APU" will make FC buses more cost-effective and commercially viable
 - Transit Bus average/intermittent power ~40 kW / 200 kW (160 kW delta)
 - \$/kW for power source: ICE ~\$75/kW, Fuel Cell ~\$5,000 to \$8,000/kW
- Develop Fleet Management guidelines for Fuel Cell and other Advanced Propulsion technologies to maximize benefit of investment
 - Procurement and O&M cost savings can be realized if buses are designed for 2-3 specific broad duty-cycle categories vs. the current "one size fits all" approach
 - Example: European "city/urban" buses with 45 mph top speed and lesser gradeability result in significantly smaller, lighter more efficient engines and higher fuel efficiency

R&D Needs – Vehicle Technical

- Top-down systems approach to define & optimize vehicle & component requirements
- Optimization of vehicle accessory systems, including balance of plant
 - At 40 kW average power, 1 kW reduction in accessory load results in a 2.5% efficiency improvement
- Optimized self-contained fuel cell APU at 20-60 kW net power output class
 - Requires only hydrogen supply, single cooling loop, and 28V power
- Increase fuel cell operating temperature by 5-10C
 - Will reduce heat exchanger size by 20% to 40%
- Ensure all "balance of plant" thermal requirements are consistent: same or escalating (serial) cooling temperature
- Reconfigure FC stack of higher power FCs so that voltage is always below DC-Link of hybrid propulsion system
 - Eliminate one DC/DC converter and its losses, improving cost weight and efficiency proposition - - allows implementation of simple FC boost converter
- Life - Increase operational life of FC to minimum 6-years, 25k hrs

