

H2@Scale Overview

Dr. Sunita Satyapal, Director - Fuel Cell Technologies Office

H2@Scale R&D Consortium Kickoff Meeting

Chicago, IL – August 1, 2018

Upward trend with global fuel cell shipments

Electrolyzers: Over 100MW/year estimated global sales

*Courtesy of NOW, E4tech and partners: A collaborative effort to assess electrolyzer market potential

An exciting time for the transportation sector

Nearly **5,000**

sold or leased in the United States

Commercial fuel cell electric cars are here

- No petroleum, no pollution
- **Refuels in minutes**
- More than 360 mi driving range
- **Over 60 mpgge**

Interest in material handling equipment applications

Long-Range, Heavy Duty Applications Emerging

New Applications Emerging- Examples

China

Germany

Eight Fuel Cell Trams

Capacity: 285 passengers Maximum speed: 70 km/hr.

Trains to operate in Germany in 2018

Capacity: 300 passengers Maximum speed: 140 km/hr.

Stationary Power Applications Expanding

Multiple H₂ and Fuel Cell Applications in the U.S.

U.S. Snapshot

CA

- 200 stations planned
- Over 30 public stations open
- \$150M invested
- \$235M announced in 2018

HI, OH, SC, NY, CT, MA, CO, UT, TX, MI, and others with interest

- Over \$27M invested
- 12-25 stations planned in the NE

^{*}Excludes recent announcement from CA to invest \$235M in electric vehicles

Vision H2@Scale: Enable affordable, reliable, clean and secure energy across sectors

Versatility

Volume

Value Proposition

H₂@scale: Enabling affordable, reliable, clean, and secure energy across sectors

More information at: www.energy.gov/eere/fuelcells/h2-scale

Lab testing electrolyzers' value for ancillary services

First Ever Validation of Frequency Regulation with Electrolyzers

Lab testing shows dynamic response within seconds and potential for grid services

Hydrogen Energy Storage is Scalable

Overview of Energy Storage Technologies in Power and Time

Cavern
could provide
~ 100 GWh
energy storage

Image: Hydrogen Council

Hydrogen can be used to monetize surplus electricity from the grid, or remote, off-grid energy feedstock (e.g. solar, wind) for days to months.

Scale: Simple Example

How much hydrogen for 1 car?

12,000 miles per year — 200 kg or 0.2 tonnes per year — per year — per year

How much hydrogen for many cars?

H2@Scale: Nationwide Resource Assessment

Labs assess
resource
availability. Most
regions have
sufficient
resources.

Red: Only regions where projected industrial & transportation demand exceeds supply.

Lab Pls: Mark Ruth, Bryan Pivovar, Richard Boardman, et al

Ammonia & Refineries - Potential H₂ Demand

Source: Elgowainy, et al, ANL

Plus demand from synthetic fuel production...

Source: Elgowainy, et al, ANL

Plus demand from FCEVs...

Nearly 30 million metric tons of potential hydrogen demand in the U.S.

Source: Elgowainy, et al, ANL

U.S. DEPARTMENT OF ENERGY

H₂@Scale: Enabling renewable energy transport?

Where we find abundant solar and wind energy

H₂@Scale: Enabling renewable energy transport?

Where energy is consumed

Analysis underway to guide future plans

Hydrogen for different scales and applications

Industry	Key Applications	Supply Systems	<u>Volume</u>
Small Scale	LaboratoriesFuel Cell Applications	 Small on-site Tube trailers Liquid H₂ 	Low < 0.1 mmscfd
Electronics	Thin-film solarSemi-ConductorsMaterials Processing	 Tube trailer Liquid H₂ Small On-Site Plant 	
Glass & Metals	Float glass mfgSteel Anealing	Liquid H₂On-Site Plant	Medium 0.1- 5 mmscfd
Chemicals	ChemicalsFoodBiofuels	Liquid H2On-Site PlantPipeline	
Refining, Ammonia	Hydro-processingDe-sulfurizationHaber-Bosch	PipelineOn-Site Plant	High 60-200+ mmscfd

Early stage R&D needs include cost reduction for materials, compressors, storage, transportation, etc.

Key focus areas to realize the H₂@scale vision

MAKE

Increased Low Cost Hydrogen Production

MOVE

More Efficient Hydrogen **Transmission**

USE

Low Cost Value-added **Applications**

STORE

Improved Bulk Storage Technologies

Strategy: Partnerships to enable H₂@Scale

Early- Stage R&D

Demonstration,
Deployment &
Commercialization

H₂@Scale Consortium

H₂@Scale R&D Lab Capabilities – Examples

Safety and Infrastructure R&D

H₂@Scale – Lab CRADAs

- Leverages Lab capabilities and expertise to address challenges- materials R&D, analysis, safety R&D, etc.
- Round 1 in 2017.

CRADA = Cooperative Research and Development Agreement SPP- Strategic Partnership Project ('Work for Others')

H₂@Scale 2017 CRADA call selections

Global Hydrogen Infrastructure Activity Underway

IPHE: International Partnership for H₂ and Fuel Cells in the Economy

- Share information on H₂ and fuel cells, lessons learned, best practices
- Increase international collaboration to accelerate progress

U.S. elected as Chair

May 2018

Launched 2003 and includes 18 countries and the European Commission

Two Requests for Information to Enable H2@scale

Opportunities to multisector use of hydrogen Just announced!

Reducing barriers to hydrogen infrastructure Closes Aug. 10

Opportunities for outreach and to increase awareness

Celebrate National Hydrogen & Fuel Cell Day October 8 or 10/8

(Held on its very own atomic- weight-day)

Information and Training Resources to Increase Awareness

H2tools.org

Download for free at:

<u>energy.gov/eere/fuelcells/downloads/increa</u> <u>se-your-h2iq-training-resource</u>

Learn more at: energy.gov/eere/fuelcells

Thank You

Dr. Sunita Satyapal

Director
Fuel Cell Technologies Office
Sunita.Satyapal@ee.doe.gov

www.hydrogen.energy.gov