

Fuel Cell Bus Workshop Overview and Purpose

Dimitrios Papageorgopoulos

Fuel Cell Technologies Program

DOE and DOT Joint Fuel Cell Bus Workshop, Washington DC
June 7, 2010

Fuel Cells - Addressing Energy Challenges

Energy Efficiency and Resource Diversity

• Fuel cells offer a highly efficient way to use diverse fuels and energy sources.

Greenhouse Gas Emissions and Air Pollution:

• Fuel cells can be powered by emissions-free fuels that are produced from clean, domestic resources.

FY 2010 APPROPRIATION = \$77.4M

FY 2010 Emphasis

R&D of materials, stack components, balanceof-plant subsystems, and integrated fuel cell systems targeting lower cost and enhanced durability

- Develop improved fuel cell catalysts and membrane electrolytes
- Characterize and optimize transport phenomena improving MEA and stack performance
- Optimize fuel cells and systems for early market applications
- Develop innovative concepts leading to a new generation of fuel cell technologies

Applications include: transportation, combined heat and power (CHP), auxiliary power units (APUs), direct methanol fuel cells for portable power, and backup power for critical infrastructure.

Fuel Cells R&D for Bus Applications: Durability ENERGY Energy Efficiency & Renewable Energy

UTC, Ballard, and LANL are studying durability and developing improved ASTs

UTC: demonstrating long lifetime in real-world bus operation

LANL: improved ASTs using materials from Gore and Ballard

Ballard: developing strategies to mitigate degradation

Fuel Cell Bus Evaluation

DOE (FCT-Tech .Val.), NREL, and FTA are working closely to evaluate fuel cell technologies in transit applications

A comparison to conventional bus technology

Attribute	Fuel Cell Technology	Conventional Diesel Technology
Fuel Economy	2 times higher than	3 – 4 miles per gallon (diesel)
	conventional buses	
Reliability		10,000 MBRC
(measured in "miles	919 – 1,600 MRBC	
between road call," or		
MBRC)		
Availability	58-77%	85%
Capital Cost	\$2 – \$3 million	\$328,000
Fuel Cost	\$8.90 to \$18.80 per diesel	\$4.72/gallon*
	gallon equivalent	

Source: L. Eudy, et al., Fuel Cell Buses in U.S. Transit Fleets: Summary of Experiences and Current Status (September 2007), NREL/TP-560-41967,

http://www.nrel.gov/hydrogen/pdfs/41967.pdf, accessed May 2008.

http://tonto.eia.doe.gov/oog/info/wohdp/diesel.asp, accessed July 2008.

^{*} Energy Information Administration, Weekly On-Highway Diesel Prices, 07/07/08,

^{*} DOE's 2008 Fuel Cell School Buses Report to Congress (http://www.hydrogen.energy.gov/congress_reports.html)

Fuel Cell Bus Workshop: Purpose

DOE and DOT have invited the fuel cell bus community and other stakeholders to participate in a discussion of the most relevant research and development topics to fuel cell buses for government funding.

Specific emphasis will be placed on:

- Fuel cell stack components
- Fuel cell system balance of plant (excluding infrastructure, demonstration, drive-train, and non-fuel cell related bus components)

Plenary speakers include:

- Fuel cell manufacturers
- Fuel cell bus integrators and end users
- Government funding agency representatives

Fuel Cell Bus Workshop: Agenda

08:00	Fuel Cell Bus Workshop: Overview and Purpose		
	DOE – Dimitrios Papageorgopoulos		
08:10	DOT/FTA national Fuel Cell Bus Program		
	DOT – Venkat Pindiprolu		
08:20	Users Perspective on Advanced Fuel Cell Bus Technology		
	CaFCP - Nico Bouwkamp NREL - Leslie Eudy		
08:30	Progress and Challenges for PEM Transit Fleet Applications		
	UTC - Tom Madden		
08:45	Fuel Cell Buses – Current Status and Path Forward		
	Ballard Power Systems – Greg James		
09:00	Powering a Full-Size Transit Bus with Two 16kW Forklift Fuel Cells – The Proterra Story		
	Proterra – Dale Hill		
09:15	HybriDrive Propulsion System – Cleaner, Smarter Power for Transit		
	BAE Systems – Bart Mancini		
09:30	Break		
09:45	Brainstorming: Technical Barriers, R&D Needs, Technical Targets & Timeframes		
	DOE – Papageorgopoulos		
11:45	Summary & Wrap-Up		
	DOE/DOT – Papageorgopoulos/Pindiprolu		
12:00	Adjourn		