Flow Batteries A Historical Perspective

Robert F. Savinell
Case Western Reserve University
Department of Chemical Engineering
DOE Flow Battery Workshop March 2012

OUTLINE

- •The first flow cell?
- Review articles- documented progress
- Early NASA Work- some learning
- •Fuel Cell and Flow Battery Similarities (and differences)
- What my group is working on at CWRU
- Acknowledgements

Redox Flow Batteries: Earliest?

Fire 2, V. 34, Pp. 330-338, 1955

Redox Fuel Cell

A. M. Posner

Concept:

Also
$$Br_2 + 2e^- \leftrightarrow 2Br^-$$

 $Sn^{2+} \leftrightarrow Sn^{4+} + 2e^-$

Figure 4. Current-voltage and polarization characteristics of cell: analyte—I-2N Br. in 0.7N HBr, 3N HCl, I-2N SNCl, catholyte—I-2N SnCl, in I-9N HBr, 3N HCl; flow rate 3 and 8 ml/min

Tvler Petek

3/17/2012

Excellent Review Articles on Flow Batteries

- •M. Bartaozzi, "Development of redox flow batteries: A historical bibliography", J. Power Sources, 27, 219-234 (1989)
- •J. Jorne, "Flow Batteries", American Scientist", 71 (5), 507-513 (1983)
- •C. Ponde de Leon, et al, "Redox flow cells for energy conversion", J. Power Sources, 160, 716-732 (2006)
- •A.Z. Weber, et al., "Redox flow batteries: a review", J. Appl. Electrochem., 41, 1137-1164 (2011)
- •M. Skyllas-Kazacos, et al., "Progress in flow battery research and development', J. Electrochem. Soc., 41, 1137-1164 (2011)

Early NASA RFB Program

Fe/Ti System

- •1975 Cost estimates \$190-\$330/kW, \$10/kW-H, Marvin Warshay
- •1976 Shunt Current Model, Paul Prokopius
- •1976 Interfaced an RFB with solar cells
- •1977 Electrode-Membrane-Flow Battery Testing
 - •Largest polarization @ negative electrodes
 - •Significant performance decay with cycle number
 - •Membrane transports more H⁺ than Cl⁻

Early NASA RFB Program

1977 NASA TM-79067

Redox Couple Screening

Fe $^{2/3}$ on C Cr $^{2/3}$ on C and on B $_4$ C V $^{2/3/4/5}$ on C and on B $_4$ C Fe(O) $_3$ - $^{3/-4}$ on Pt and on C Br $^{-1}$ /Br $_2$ on B $_4$ C

NASA effort moved to Cr^{2/3} system because of attractiveness of cost and cell potential

Electrode Screening

Graphite- cloth, felt, foam, chips Screens- Ag, AgCl, Hg-Ag, Nb, Ta, W-Re, Hg-Cu Granules- Pb, Hg-Pb, Bi

Early NASA RFB Program- Fe/Cr

NASA TM-79067 (DOE/NASA/1002-78/2)

ANION MEMBRANE SCREENINGS

Areal Resistivity

Commercial/Inhouse * $2 - 10 \Omega$ -cm²

Nafion 117 $\sim 0.2 \Omega - cm^2$

Resistivity increases with time caused by fouling of charged sites and pore plugging

Cross-over continues to be an issue

*most promising co-polymers of vinylpyridines, vinylbenzenes, vinylbenzylchloride, divinylbenzes, and dimethylamine-ethylmethacrylate

NASA 1979

AIAA Terrestrial Energy Systems Conference, Orlando, Fl

Introduction of the Rebalance Cell Concept

CAPACITY RETENTION OF A SYSTEM EQUIPPED WITH REBALANCE CELL USING BOTH INTERNAL AND EXTERNAL REBALANCE MODES

J. Giner and K. Cahill Feb 1980 NASA CR-159738

Cr³/Cr² Reaction Electrode Materials Screening

Five Step Screening

- 1. H₂ evolution in HCl
- 2. Cr³ reduction activity
- 3. Anodic corrosion in HCl
- 4. Cr² oxidation activity
- 5. Further detailed studies

Metals and metalloid materials tested:

As, Au, Br, Vitreous C, Graphite C, Cd, Cu, In, Pb, Sb, SiC, Sn, Ti, W, WO, Ag/Hg, Cu/Hg, Pb/Sn, TaC, TaN, TiC, TiN, ZrC, ZrN, B₄C, Cu/Pb, WC, Ag/Pb, Au, Au/Pb

Replace with fig 37

Tyler Petek

3/17/2012

Electrocatalyst- In situ Bi deposition with added salt to electrolyte

Figure 12. - Effect of re-catalyzing the chromium electrode after air exposure.

NASA RFB Later Work

•1980-82 Cell stacks and integration with solar cells

NASA TM-81464, TM-82607

•1982 Cost prediction for production of redox chemicals

NASA CR-167882

•1982 Pumping Losses and Shunt Current Losses

NASA TM-82686

•1982 Introduction of mixed reactants, elevated temperatures and

additive electrocatalyst

NASA TM-83401

Tyler Petek

3/17/2012

NASA Cell Structures-modern performance and cost improvements?

NASA 1982 Pumping and Shunt Current Losses

TM-82686

Pumping Losses

0.5 – 1% variable flow 4.6- 8.8% Constant flow (1.5-2 SF @90% DOD)

Shunt Current Losses

 $40 \text{ cell stack } \sim 2\% \text{ (at } 65 \text{ mA/cm}^2\text{)}$

Aug 1983 NASA TM-83385

Fe/Cr RFB Mixed Reactant Solutions

Advantages:

- Improved voltaic efficiency due to low resistance cation membranes
- Less selective, less costly membranes can be used
- Remixing electrolyte to correct for imbalances from cross-over and counter movement
- Smaller cell stacks due to higher power densities
- Lower chemical costs

Disadvantages:

- Lower coulombic efficiency due to cross-over
- Larger masses of chemicals needed
- Lower open-circuit voltage due to dilution

Figure 13. - Change and discharge polarization ourses for moud reactant system.

CD, mA/cm ²	Resist, ohm- cm ²	Coul eff, percent	W-H eff, percent	H ₂ evol, percent
43	0.74	92	86	0.3
65	.99	95	83	1.0
86	.88	95	81	.3
108	1.00	96	76	.3
129	.94	97	75	.6

Cell area: 14.5 cm²

Membrane resistivity: 0.45- 0.70 ohm-cm²

Membrane selectivity: 1000 μg Fe/hr/cm²/mole/liter

Chrome Redox Chemistry Details

1982 TM-82913

(A) $Cr(H_2O)_6^{3+} + HCl \leftarrow \rightarrow Cr(H_2O)_5Cl^{2+}$ Elevated temperature drives equilibrium to right

- (B) $\operatorname{Cr}(H_2O)_5\operatorname{Cl}^{2+} + \operatorname{e} \to \operatorname{Cr}(H_2O)_5\operatorname{Cl}^+ \text{ fast}$
- (C) $Cr(H_2O)_{6^{3+}} + e \rightarrow Cr(H_2O)_{6^{2+}}^{2+} slow$

Inner Sphere electron transfer with pentahydrate-monochloro (JACS, 97:15/July 23, 1975)

Figure 3. - Charging performance comparison for mixed and unmixed reactant systems as a function of temperature.

Other Flow Battery Systems

HALIDE POSITIVE ELECTRODE-very fast and reversible reactions **Chlorine**: ADVANTAGES: high potential, low corrosion, membrane-less DISADVANTAGES; RuO₂ electrocatalyst, Ti substrates, low temp hydrate storage

Bromine: ADVANTAGES: low cost graphite electrodes, bromine complex storage

DISADVANTAGES: high corrosion rates, membrane required, low potential

ZINC NEGATIVE ELECRODE ADVANTAGES high hydrogen overpotential, fast reaction, large negative potential, high energy density DISADVANTAGES: dendrites, cell shorting, coupled power-energy

HYDROGEN NEGATIVE ELECTRODE ADVANTAGES: fast reaction DISADVANTAGES: Pt catalyst, GDE required, Hydrogen storage

COMPONENT	FUEL CELL	FLOW BATTERY
REACTANTS	GAS	MOSTLY LIQUIDS, UNDERSTANDING SPECIATION
ELECTRODES	Pt/C THIN LAYER, DURABILITY, SUBSTRATE STABILITY	GRAPHITE THICK LAYER FELT, CATALYST, DURABILITY, SUBSTRATE STABILITY
ELECTRODE DESIGN	THIN LAYER MEA Low C (concentration), high D (diffusivity)	FLOW THROUGH High C, low D
MEMBRANE	CATION PERMSELECTIVE IN GAS PHASE, LOW REACT SOLUBILITY	CATION, ANION, OR MICROPOROUS IN LIQUIDS, HIGH REACT SOLUBILITY
BIPOLAR PLATES	GRAPHITE, METALS, COMPOSITES	SAME
CELL STRUCTURE	PLATE AND FRAMES WITH FLOW FIELDS	SAME, LIQUID HYDROSTATIC EFFECTS, SHUNT CURRENT PATHS
BALANCE OF PLANT	H2 STORAGE, WATER BALANCE, THERMAL CONTROL, POWER CONDITIONING	TANKS, PUMPS, POWER CONDITIONING, C/D control

FRB Research at CWRU

Mechanistic and kinetic studies of electrocatalyst, electrode supports, and durability

All Iron Flow Battery Approach

Low cost bi-polar plates with engineered structures for low cost RFBs collaboration with Faraday Technology

Membranes with high conductivity, long durability, and low cost collaboration with Hossein Gossemi

Non-aqueous RFB approaches for high power and energy density collaboration with Levi Thompson of UM

Kinetic and Reaction Mechanism Studies, electrocatalysts, electrode supports, durability

Separate out ohmic and mass transfer comlications

Approach: Thin Fiber Film RDE -based on FC electrocatalyst testing experience

Preliminary Results: RDE experiments with the

TFFRDE

Fibers are electronically connected and accessible

Further analysis and optimization for kinetic studies still needed

Glassy Carbon

The First Flow All-Iron Energy Storage System-1861

December 1861

A Mighty Wind

"One of the great forces nature furnished to man without any

expense, and in limitless abundance, is the power of the wind. Many efforts have been made to obtain a steady power from the wind by storing the surplus from when the wind is strong. One of the latest and simplest of these is illustrated in the accompanying engraving. A windwheel is employed to raise a quantity of iron balls, and then these balls are allowed to fall one by one into buckets upon one side of a wheel, causing the wheel to rotate, and thus to drive the machine."

Harness the wind: Rube Goldberg in form, basic physics in function, 1861. The iron balls the machine used would have made a fearsome din.

CWRU Iron Flow Battery Technology

pH=2

Advantages:

Low Cost Active Element (Iron)
Inexpensive Separator
common electrolyte for
positive/negative electrodes
Safety

non-toxic materials, moderate pH

Motivation-eliminate V

Provisional patent filed by CWRU

The Next All-Iron Energy Storage System-1981

FINDINGS

- •Capable of RT energy storage, 90% CE, 50% EE
- •100 cycles @ 60 mA/cm²
- •Low pH for redox, high pH for plating reaction
- •Plating on Ti

Fig. 1. Schematic of iron-redox laboratory cell and electrolyte circuit.

Fig. 14. Measured voltage breakdown for the initial cycle of a 100 cm² laboratory cell at 60 mA/cm², 60° C, and pH=1.

L.W. Hruska and R. Savinell, J. Electrochem Soc, 128, 18-25 (1981)

Iron Flow Battery Positive Electrode Overview

- Fast reaction kinetics ($i_0 \approx 10 \text{ mA/cm}^2$)
- At low pH Fe⁺² and Fe⁺³ highly soluble (e.g., FeCl₂, 4.9M at 20C)
- Goal to raise pH with high ferric ion solubility while maintaining kinetics and positive potential

Iron Flow Battery Negative Electrode Overview

- •Increase pH and use additives to minimize hydrogen evolution
- •Must be compatible with positive electrolyte with minimal membrane requirements
- •Reversible kinetics for iron dissolution

CWRU All-Fe FB R&D Strategy

Electrochemical Engineering and Energy Lab @ Case

Acknowledgements
DOE Golden Office
DOE OE Dr. Imre Gyuk
NSF EAGER
Great Lakes Energy Institute