

RENEWABLE ENERGY

DOE Hydrogen and Fuel Cell Technologies Office and Global Perspectives

Dr. Sunita Satyapal, Director, Hydrogen and Fuel Cell Technologies Office

PIME Hydrogen Projects in Transport Workshop, Poland December 11, 2020

Global Perspectives

Hydrogen and Fuel Cell Technology Growth Worldwide

Global fuel fell shipments surpass 1 GW

25-fold increase in electrolyzers deployed in the last decade <1MW in 2010 to >25 MW by the end of 2019

Global FCEVs doubled to >25,200 >12.3K sold in 2019 vs. 5.8K in 2018

470 H₂ fueling stations worldwide > 20% increase from 2018

Source: E4tech for DOE analysis project

Source: IEA (2020), Hydrogen, IEA, Paris, https://www.iea.org/reports/hydrogen

Global Drivers and Energy Related Carbon Emissions by Sector

Drivers include:

- Emissions reduction
- Energy security
- Economic growth
- Resiliency
- Energy efficiency
- Innovation potential
- Environmental benefits

Source: IRENA, 2017a from: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Sep/IRENA_Hydrogen_from_renewable_power_2018.pdf

Roadmaps and Plans Developing Worldwide

U.S. Department of Energy **Hydrogen and Fuel Cell Technologies Office** Update

US DOE Hydrogen Program Plan

Released November 2020 - www.hydrogen.energy.gov

Hydrogen Program Vision and Key Targets

Vision

The Program's vision is a prosperous future for the nation, in which clean hydrogen energy technologies are affordable, widely available and reliable, and are an integral part of multiple sectors of the economy across the country.

æ

Examples of Key DOE Hydrogen Program Targets

DOE targets are application-specific and developed with stakeholder input to enable competitiveness with incumbent and emerging technologies. These targets guide the R&D community and inform the Program's portfolio of activities. Examples include:

- \$2/kg for hydrogen production and \$2/kg for delivery and dispensing for transportation applications
- \$1/kg hydrogen for industrial and stationary power generation applications
- Fuel cell system cost of \$80/kW with 25,000-hour durability for long-haul heavy-duty trucks
- On-board vehicular hydrogen storage at \$8/kWh, 2.2 kWh/kg, and 1.7kWh/l
- Electrolyzer capital cost of \$300/kW, 80,000 hour durability, and 65% system efficiency
- Fuel cell system cost of \$900/kW and 40,000 hour durability for fuel-flexible stationary high-temperature fuel cells

H2@Scale: Enabling affordable, reliable, clean, and secure energy

- Hydrogen can address specific \bullet applications across sectors that are hard to decarbonize
- Today: 10MMT H₂ in the U.S. •
- **Economic Potential: 2 to 4x more**

Strategies

- Scale up technologies in key sectors
- Continue R&D to reduce cost and improve performance, reliability
- Address enablers: harmonization of codes, standards, safety, global supply chain, workforce development, sustainable markets

Source: U.S. DOE Hydrogen and Fuel Cell Technologies Office, https://www.energy.gov/eere/fuelcells/h2scale

Snapshot of Hydrogen and Fuel Cells Applications in the U.S.

U.S. Hydrogen Electrolyzer Locations and Capacity (KW)

* Polymer electrolyte membrane

Fuel Cell Stationary Power for Multiple Applications

Fuel cells provided backup power during Hurricane Sandy in the U.S. Northeast

Fuel cell power for maritime ports demonstrated in Honolulu, Hawaii

Fuel cells included for power to new World Trade Center in NYC

Over 500 MW of fuel cell stationary power installed across more than 40 US states

Fuel Cell Forklifts for Material Handling Applications

More than **35,000 forklifts**

Over 20 million refuelings

Heavy Duty Applications Emerging

Several companies developing long haul Class 8 fuel cell trucks

Fuel cell delivery truck projects by DOE + industry

Fuel cell parcel truck demonstration

Benefits and Impacts Analyses Underway – Example

Examples of H2@Scale Analysis and Demonstration Projects

Assessing resource availability. Most regions have sufficient resources.

New H2@Scale demonstration projects cover range of applications

*Includes 1 project by Office of Nuclear Energy

Example of H2@Scale Demonstration Projects

Demonstration of H2@Scale: Different regions, hydrogen sources and end uses

Texas		Florida		Site selection in process	
Total Budget	Wind, Solar,	Total budget	Solar-to-H ₂ with	Total Budget	Nuclear-to-H ₂ for
\$10.8M	RNG/Waste	\$9.1M	End Uses	\$7.2M	at-Plant Use

Examples of H2@Scale Demonstration Projects -2020

Demonstration of H2@Scale: Different regions, hydrogen sources and end uses

Marine Application		H ₂ for Data Center		H ₂ for Steel Production	
Total Budget \$16M	Electrolyzer and fuel cell for marine application	Total Budget \$13.7M	PEM fuel cell for data center power	Total Budgets \$5.7M & \$7.2M	DRI-process and grid-interactive steelmaking
PIER 130" x 40" x 7" Floating Barge Floating Barge	Electrolysis Controls Bunkering System	Design, Safety, and Analysis GHG case studies Design and sizing optimization Safety and site lessons learned Logistics and scalability Hydrogen H2 Liquid H2 Gaseous H2 Hydrogen Liquid H2 Site Hydrogen H2 Fuel Cell Eller Innovation Power Controls and system Power Center Data Eist-of-its-kind Strettrue H2 Center Data List of-its-kind JSW field cell JSW field cell		55% HZ-35% HZO 500C 50	Reduction of 30% in energy
Power for Battery Charging Hybrid Electric Vessel	CH, Vesal Supply	DC bus system: fuel cell + battery Single or shared load capability Fast response and grid support	Backup power performance testing Electric Grid T Ancillary services performance testing Dynamic operation and control	Electricity H ₂ Storage H ₂ H ₂ H ₂ H ₂	1 ton/wk iron prod.; scaled to
	ritime H_2 refueling on up to 530 kg H_2 /day		o meet data center nd future scale up	Crid Integration Electrolyzer Scrap - Lime - Carbon Scrap - Steel - Fr-F	HB 5,000 Intel 1,256 and 8 5,000 Intel 1,256 and 8 ton/day

HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE

R&D Efforts Underway

DOE Hydrogen and Fuel Cell Technologies Office Focus Areas

Mission

Research, development, and innovation in hydrogen and fuel cell technologies leading to:

- Energy security
- Energy resiliency
- Strong domestic economy

Key R&D Sub-Programs and Focus Areas

- Cost, durability, efficiency
- Components (catalysts, electrodes) & systems
- Focus on heavy duty applications (trucks, marine, data centers, rail, air, etc.)
- Hydrogen production, infrastructure/delivery, storage (for transport and stationary storage)
- Cost, efficiency, reliability & availability.

Systems Development & Integration

- Hybrid, grid integrated systems, energy storage
- Safety, codes & standards
- Technology acceleration, workforce development

Data, Modeling, Analysis: Assess pathways, impacts; set targets, guide R&D

Key Goals by 2030

Reduce the cost of:

- Heavy duty fuel cells by 2X to \$80/kW
- Electrolyzers by 3 to 5x to \$300/kW
- Storage tanks by over 40% to \$9/kWh
- H₂ delivery and dispensing by 4 to 5x to \$2/kg
- H₂ production by 2 to 3x to \$2/kg

Improve fuel cell durability 5x to 25,000 hours

Double energy density for onboard storage to 1.7 kWh/L

Budget: \$150M in FY2020

Key Programmatic Areas

Includes early stage R&D: Funding Opportunity Announcements (FOAs) for industry, universities and national labs, including consortia And includes later stage RD&D: Leverages private sector for large-scale demonstrations and cost-shared RD&D. Demos in TX, FL, Midwest, CA and more

Just Announced: \$64M for 18 projects including R&D and demonstrations at ports and datacenters, and a workforce development program . Includes collaboration with Advanced Manufacturing Office and Vehicles Office in EERE

R&D focus is on Affordability and Performance: DOE Targets Guide R&D

Key Goals: Reduce the cost of fuel cells and hydrogen production, delivery, storage, and meet performance and durability requirements – guided by applications specific targets

*Based on state of the art technology **Based on commercial FCEV analysis at 3,000/yr [†]Storage costs based on preliminary 2019 storage cost record

(~180kg/d)

*For range: Assumes high volume manufacturing in 1) H2 production costs ranging from \$2/kg (NG) to \$5/kg (electrolysis manufactured at 700 MW/year), and 2) Delivery and dispensing costs ranging from \$3/kg (advanced tube trailers) to \$5/kg (liquid tanker or advanced pipeline technologies). ** Range assumes >10,000 stations at 1,000 kg/day capacity, to serve 10 million vehicles

HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE

Fuel Cell Cost Drivers

Example of cost drivers for fuel cell stack (automotive systems)

New efforts focus on heavy duty truck targets: Targets: \$80/kW, 25,000 hour durability, 68% efficiency by 2030 \$60/kW and 30,000 hour durability – ultimate targets

Electrolysis Cost – Recent Independent Analyses

Today's Polymer Electrolyte Membrane (PEM) electrolyzers require 65 75% cost reduction

H₂ Cost Dependence on Electricity 1,500 10 CAPEX USD 450/kWe 8 10¢/kWh 65 - 75% \$/kW 8¢/kWh 6 \$/kg H₂-6¢/kWh 4¢/kWh 1,100 2¢/kWh 400 0¢/kWh/ 2 curtailmen С \$0.03/kWh 6000 8000 4000 Today's Cost System Cost (1MW) Industry Source: US Industry H2 Full load hours Target can get <\$2/kg</pre> Roadmap, March 2020 Estimates (System) Source: IEA Hydrogen Future Report 2019

Today's hydrogen cost from PEM electrolyzers: ~ \$5 to \$6/kg at \$0.05 to \$0.07/kWh

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE

\$2/kg H2 is achievable at about \$0.03/kWh

electricity cost and high utilization

Key Cost Contributors to Low Temp and High Temp Electrolyzers

Cost Breakdown for Low Temperature (PEM) Electrolyzers

Cost Breakdown for High Temperature Electrolyzers (SOECs)

Excludes electricity cost

Source: DOE, Hydrogen and Fuel Cell Technologies Office, Updated analysis underway

U.S. DEPARTMENT OF ENERGY	OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY	HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE
---------------------------	--	--

Identifying Hydrogen Cost Drivers is Key

H₂ Onboard Storage Cost Drivers: Carbon Fiber Precursors and Processing

H₂ Infrastructure Cost Drivers: Compressors, Storage and Other Components

Hydrogen Storage Cost (Onboard 700 Bar Hydrogen Storage Vessel)

Hydrogen Infrastructure Cost (700 Bar Hydrogen Station)

Source: DOE, Hydrogen and Fuel Cell Technologies Office, 2018-2019, Updated analysis underway; Station cost- one example; multiple station designs underway

Cross-cutting Materials Compatibility R&D

H-Mat Consortium conducts R&D on hydrogen effects on polymers and metals

- Enabling the safe use of hydrogen across applications and the development of harmonized codes and standards
- Addressing hydrogen blending with natural gas, reducing expansion of seals, improving life of vessels through improved understanding of crack nucleation, enhancing fracture toughness of high-strength steels, and more
- Over 25 partners with industry, labs, universities

SM

(I)-Mat

For More Information

Website: energy.gov/eere/fuelcells/h-mat-hydrogen-materials-consortium Email: h-matinfo@pnnl.gov

U.S. DEPARTMENT OF ENERGY

OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE

20% hydrogen blends could enable a doubling¹ of U.S. renewables consumption

% H2/NG blends vary widely from <1% to 30%. Up to 15% may be feasible without significant modification to existing infrastructure

Launched HyBlend: R&D project to enable H₂ blending and address challenges

 U.S. Projected Renewable Energy Consumption in Power Generation in 2019: 702.7 TWh (Source: AEO 2020)
 20% hydrogen blend in the U.S. by volume = 16 MMT/year, which would require ~750 TWh of electricity if produced via electrolysis. (Source: Elgowainy, et al, 2020)

Renewables are coming on line and low cost is enabling hydrogen

Example: Installed Capacity in Texas

Rapid deployment of renewables and cost reduction (eg, \$0.03/kWh)

Increased interest in hydrogen production, storage and use

H₂ is at \$5 to \$6/kg from electrolysis at \$0.05 to \$0.07/kWh

Source: ERCOT, DOE H2@Scale Workshop, TX

Additional Value of Hydrogen: Grid Services and Resiliency

Flexibility will be needed to address grid challenges: high ramp rates and demand fluctuations

Predicted 2025 California EV Charging Load Profile (Weekday) shows impact of demand profiles on the grid

DOE national lab tests show dynamic response potential of electrolyzers

Idaho National Lab & National Renewable Energy Lab results. Direct fast charger impact project underway 2020-2021

Source: CEC/NREL Report https://www.nrel.gov/docs/fy18osti/70893.pdf

Collaboration

"No one can whistle a symphony. It takes a whole orchestra to play it." - H. Luccock

Examples of Global Collaboration

Coordinating across global partnerships: IPHE, Ministerials, Mission Innovation, IEA, etc. Global Center for Hydrogen Safety established to share best practices, training resources and information

The International Partnership for Hydrogen and Fuel Cells in the Economy

Enabling the global adoption of hydrogen and fuel cells in the economy

New Chair: Dec 2020: The Netherlands Vice Chairs: U.S. Japan

www.iphe.net

Key Activities: Harmonization of codes & standards, Information sharing on safety, policies, regulations, analysis, education. Task force on developing H₂ production analysis methodology to facilitate international trade, global RD&D monitoring

Over 20 Formed countrie in 2003

S

www.aiche.org/CHS

Hydrogen and Clean **Energy Ministerials**

Mission Innovation Hydrogen Challenge

International **Energy Agency**

Current Activities within IPHE Working Groups

- Sharing lessons learned on safety
- Reports, workshops
- Assessing gaps in RCS to enable harmonization and identify key priorities

H₂ Production Analysis (H2PA)

Task Force on analysis to facilitate international trade of hydrogen

- Developing a common analytical framework to determine emissions footprint for hydrogen
- Harmonizing approach across countries and pathways

Education & Outreach (E&O)

• Workshops. webinars

- Events
- Fellowship
- Early Career Chapter
- Infographic Challenge
- Tracking & disseminating progress

Sharing information, resource development, country updates, policy forums, convening other partnerships to coordinate activities, tracking progress for Global Action Agenda and dissemination

HYDROGEN Safety Panel

What can you do?

Get involved, coordinate, leverage, help with education and outreach!

Follow @the_iphe

IPHE website on hydrogen status in over 20 countries

IPHE E&O Working Group Early Career Chapter

- Established by IPHE's Education & Outreach (E&O) Working Group to promote international H₂ and fuel cell awareness and launch a platform for the next generation of H₂ and fuel cell leaders
- Open to students, post-docs and early career professionals

Learn more: iphe.net/early-career-chapter Membership form: https://forms.gle/gUnWyV7gU4QqoHLm7 Stephanie Azubike Chair

Priya Buddhavarapu Co-Chair

Resources and Events

Save the Date

June 8th week, 2021 Annual Merit Review and Peer Evaluation Meeting for the DOE Hydrogen and Fuel Cells Program

Resources

HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE

Thank You

Dr. Sunita Satyapal, Director

Hydrogen and Fuel Cell Technologies Office <u>Sunita.satyapal@ee.doe.gov</u> https://www.energy.gov/eere/fuelcells/hydrogen-and-fuel-cell-technologies-office

www. hydrogen.energy.gov