BREAKOUT GROUP 1: CATALYSTS PARTICIPANTS

NAME	ORGANIZATION
Radoslav Atanasoski	3M
Plamen Atanassov	University of New Mexico
Stephen Campbell	Automotive Fuel Cell Cooperation
David Cooke	Lamar University
Sally Davies	Sudchemie Inc.
Huyen Dinh	National Renewable Energy Laboratory
Mark Edmundson	W. L. Gore & Associates
Thomas Gennett	National Renewable Energy Laboratory
Dave Ghosh	National Research Council Institute For Fuel
	Cell Innovation
Mallika Gummalla	University of Tennessee at Chattanooga
Charles Hays	Jet Propulsion Laboratory
Kelly Jezierski	Next Energy
Shyam Kocha	National Renewable Energy Laboratory
Di-Jia Liu	Argonne National Laboratory
Karren More	Oak Ridge National Laboratory
Sanjeev Mukerjee	Northeastern University
Debbie Myers	Argonne National Laboratory
S. R. Narayanan	Jet Propulsion Laboratory - NASA
Ryan Richards	Colorado School of Mines
Mike Rinker	Pacific Northwest National Laboratory
Jacob Spendelow	U.S. Department of Energy
Jeremy Steinshnider	JSJ Technologies
Gerald Voecks	Retired Chemist
Silvia Wessel	Ballard
Steve Xiao	Savannah River National Laboratory
Piotr Zelenay	Los Alamos National Laboratory
Jiujun Zhang	National Research Council Institute For Fuel
	Cell Innovation
Nancy Garland (Facilitator)	U.S. Department of Energy
David Peterson (Scribe)	U.S. Department of Energy

BREAKOUT GROUP 1: CATALYSTS KEY TECHNICAL BARRIERS

PGM CATALYSTS	Non-PGM Catalysts	ROBUSTNESS/DURABILITY	SUPPORTS	LAYERS & TRANSPORT	OTHER
 There is a poor activity to cost ratio of PGM catalysts for oxygen reduction Need better understanding of structure-durability relationship of nanostructured catalyst configurations. Do not know the nature of the PtO_x and Pt^{+x} species in the fuel cell operating range Lack fundamental understanding of size, shape, facet, structure, etc. effects on stability, activity, and performance Need understanding of the theoretical limitations of Pt and Pt alloy catalysts and whether these have been reached. 	 Lack fundamental understanding of the active site in non-PGM catalysts. Need well-structured non-PGM catalyst to replace Pt and Pt alloys Need rational design of non-PGM catalysts 	 Need to inhibit Pt dissolution and carbon support corrosion during FC operation Need better understanding of Pt dissolution and interaction with support, ionomer, and oxides Lack robust catalyst capable of operating over a wide range of operating conditions Lack CO-tolerant anode catalysts that work without air bleed Lack impurity-tolerant anode catalysts to enable lower catalyst loadings at low anode voltage 	Need new catalysts/ supports with improved corrosion resistance Fundamentally need better methods to separate the catalytic processes from the engineering Lack adequate tools to understand the catalyst/ionomer interface and degradation thereof Lack of understanding of catalyst - proton conductor - electron conductor interfaces and interactions	 Lack of fundamental understanding on how to improve the performance of novel catalysts in MEAs Catalyst utilization is not sufficient Need more fundamental understanding of electron and proton transport to and from the catalyst Extended surface catalysts are currently available only in ultra-thin electrodes (which pose unique challenges) Need to design thick layers of non-PGM catalysts (≥50 µm) with effective mass transport and ionic/electronic conductivity Lack of understanding of the interplay between the catalytic activity and transport phenomena and wettability at a range of hierarchical scales from nano to micro scale 	 Lack effective catalyst for direct fuel cells Current high-activity catalysts frequently have lower performance at high current density Lack sufficient understanding about HOR/ORR selective catalysts Lack analytical methods necessary to increase the understanding of catalyst phenomena Need better understanding of RDE - MEA performance correlation (i.e., tests to better mimic MEA performance need to be developed)

BREAKOUT GROUP 1: CATALYSTS CRITICAL R&D NEEDS

FUNDAMENTAL STUDIES OF PT MATERIALS	PGM ANODE	PGM CATHODE	OTHER
 Fundamental understanding of catalyst/support interactions for improved performance and durability Fundamental understanding of catalyst morphology/activity/durability relationships Fundamental studies to optimize catalyst morphology (size, shape, facets) and stability (attachments) R&D focused on the theoretical limits of Pt, Pt alloy and structures to assess performance limitations Fundamental understanding of Pt alloy degradation mechanism/rate and effect on performance Fundamental understanding of catalyst performance vs. structure relationship In situ characterization of proton conductor-electron conductor-catalyst interface Theory and modeling from atomic size to cm size Correlation among catalyst performance, catalyst structure, and molecular modeling 	 Development of novel anode catalysts with high impurity/contaminant tolerance Development of novel catalyst synthesis methods 	 Studies focused on overcoming Pt oxide formation at voltages > 0.8V Improved nanostructure design of cathode catalysts Cathodes with resistance to anion poisoning in low water activity environment Contaminant-tolerant Pt cathode catalyst Further reduction of PGM content to reduce cost 	 Develop new innovative test methods and procedures beyond existing methods Develop ex situ tests for novel catalysts that mimic MEA Develop methods to reclaim PGM catalyst in fuel cells Need to consider the complete catalyst system (i.e. catalyst and support) in R&D efforts Potential Performance Targets: 0.8A 0.8V (initial target) 0.85A 0.9V 0.95A 0.95V 1.0 A 1.0V (long term target)

BREAKOUT GROUP 1: CATALYSTS CRITICAL R&D NEEDS (CONT'D)

Non-PGM CATALYSTS	LAYERS AND TRANSPORT ENGINEERING	SUPPORTS	ROBUSTNESS/DURABILITY
 Fundamental research and development of non-PGM catalysts for oxygen reduction Fundamental understanding of non-PGM catalysts active site/formation process Non-PGM catalysts for the anode Predictive modeling and simulation for non-PGM catalysts Contaminant tolerant catalysts Anode: CO, S, halogen-tolerant Cathode: air contaminants-tolerant Crossover: tolerant Lower cost synthetic route 	 Correlation of structure to diffusion coefficient, solubility, and mass transport as a function of operating conditions Optimization of MEA structure for novel catalysts Development of extended surface catalysts in more traditional "thick" electrodes (structure) Understanding of the 3-phase interface and changes during operation specifically with respect to relative humidity transients Identification of electrode requirements (materials/ structure) that enable the realization of "high activity" of catalysts 	 Design facet-oriented Pt (alloy) catalysts on reactive (non-carbon) supports Develop Pt alloys on non-carbon supports Develop alternate supports for more durable catalysts 	 Develop catalysts that can operate over a range of operating conditions, including high cell voltage ranges (>0.8V) Develop a materials approach to inhibiting Pt dissolution Quantify and identify dissolved Pt^{*x} species in ionomer Need R&D of deactivation mechanisms Need development of basemetal and sulfur-tolerant catalysts