

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

U.S. Department of Energy Hydrogen and Fuel Cell Technologies Office and Global Perspectives

Dr. Sunita Satyapal Director, Hydrogen and Fuel Cell Technologies Office

HOC (Hydrogen Online Conference), Mission Hydrogen- October 8, 2020

Happy Hydrogen and Fuel Cell Day – A week-long celebration of progress

HYDROGEN& FUELCELL WARDEN MARKEN States of the second seco

> #HydrogenNow #FuelCellsNow

Hydrogen and Fuel Cell Day October 8 (10.08)

- Represents hydrogen's atomic weight of 1.008
- Celebrated in the U.S. since 2015 with weeklong activities
 - Blogs, announcements
 - Ride and drives, presentations at schools, tech demos
 - Interactive online resources (i.e. 101 quiz, career map)

What can you do?

- **Post on social media** and share information, use hashtags!
- Increase your H2IQ by tuning in to the monthly H2IQ hours
- **Test your H2IQ** by taking the hydrogen and fuel cell quiz
- Learn about fuel cell and hydrogen jobs with the career map
- Follow @The_IPHE on twitter for global hydrogen updates

More info: hydrogen.energy.gov

Global Perspectives

Hydrogen and Fuel Cell Technology Growth Worldwide

Global fuel fell shipments surpass 1 GW

25-fold increase in electrolyzers deployed in the last decade <1MW in 2010 to >25 MW by the end of 2019

Global FCEVs doubled to >25,200 >12.3K sold in 2019 vs. 5.8K in 2018

470 H₂ fueling stations worldwide > 20% increase from 2018

Source: E4tech for DOE analysis project

Source: IEA (2020), Hydrogen, IEA, Paris, https://www.iea.org/reports/hydrogen

Examples of Electrolyzer Deployments and Plans... by 2025

Adapted from various sources, including US Hydrogen Industry Roadmap

Roadmaps and Plans Developing Worldwide

Drivers include: Energy security, energy efficiency & resiliency, economic growth, innovation & technology leadership, and environmental benefits

Global energy demand supplied with hydrogen, EJ

Global Energy Related Carbon Emissions by Sector

Source: IRENA, 2017a from: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Sep/IRENA_Hydrogen_from_renewable_power_2018.pdf

Sectors today with no economically scalable option for deep emission reductions

U.S. Department of Energy **Hydrogen and Fuel Cell Technologies Office** Update

Guiding Legislation and Budget – Hydrogen and Fuel Cells Program

History: DOE efforts in fuel cells began in the mid-1970s, ramped up 1990s, and 2003-2009

Energy Policy Act (2005) Title VIII on Hydrogen

- Authorizes U.S. DOE to lead a comprehensive program to enable commercialization of hydrogen and fuel cells with industry.
- Includes broad applications: Transportation, utility, industrial, portable, stationary, etc.

Program To Date

- >100 organizations & extensive collaborations including national lab-industry-university consortia, led by DOE Hydrogen and Fuel Cell Technologies Office
- Includes H₂ production, delivery & infrastructure, storage, fuel cells and cross cutting activities (e.g. safety, codes, standards, technology acceleration, systems integration)
- HFTO coordinates with Offices of Fossil, Nuclear, Science, Electricity, and ARPA-E

Impact: Reduced fuel cell cost 60%, quadrupled durability, reduced electrolyzer cost 80% and other advances, and *enabled over 1,100 patents and* commercial H_2 and fuel cell systems across applications

DOE Hydrogen and Fuel Cell Technologies Office Focus Areas

Mission

Research, development, and innovation in hydrogen and fuel cell technologies leading to:

- Energy security
- Energy resiliency
- Strong domestic economy

Key R&D Sub-Programs and Focus Areas

Hydrogen

- Cost, durability, efficiency
- Components (catalysts.) electrodes) & systems
- Focus on heavy duty applications (trucks, marine, data centers, rail, air, etc.)
- Hydrogen production, infrastructure/delivery, storage (for transport and stationary storage)
- Cost, efficiency, reliability & availability.

Systems **Development &** Integration

- Hybrid, grid integrated systems, energy storage
- Safety, codes & standards
- Technology acceleration, workforce development

Data, Modeling, Analysis: Assess pathways, impacts; set targets, guide R&D

Key Goals by 2030

Reduce the cost of:

- Heavy duty fuel cells by 2X to \$80/kW
- Electrolyzers by 3 to 5x to \$300/kW
- Storage tanks by over 40% to \$9/kWh
- H₂ delivery and dispensing by 4 to 5x to $\frac{2}{kg}$
- H_2 production by 2 to 3x to $\frac{2}{kg}$

Improve fuel cell durability 5x to 25,000 hours

Double energy density for onboard storage to 1.7 kWh/L

Budget: \$150M in FY2020

Budget and Focus Areas in EERE H₂ and Fuel Cell Technologies Office

EERE HFTO Activities	FY 2020 (\$K)
Fuel Cell R&D	26,000
Hydrogen Fuel R&D	45,000
Hydrogen Infrastructure R&D (included in Hydrogen Fuel in FY21)	25,000
Systems Development & Integration (Technology Acceleration)	41,000
Safety, Codes, and Standards (included in Systems Development & Integration in FY21)	10,000
Data, Modeling and Analysis	3,000
Total	\$150,000

Hydrogen and Fuel Cells Breakdown FY 2020

- Production: Water splitting electrolysis (high and low temperature), PEC, STCH, biomass/biological
- Infrastructure: Materials, delivery, components & systems
- Storage: materials-based, carriers, tanks, liquid
- Fuel cells: materials, components, systems, reversible FCs
- Systems Development & Integration: Tech Acceleration includes hybrid/grid integration, new markets, heavy duty, energy storage, manufacturing industrial applications (e.g. steel) safety, codes, standard, workforce development

*Will be moved under Hydrogen Fuel R&D in FY 2021

Note: Office of Fossil Energy covers fossil fuels to $\rm H_2$

Snapshot of Hydrogen and Fuel Cells Applications in the U.S.

Hydrogen Production Pathways: An all-of-the-above portfolio

FOSSIL RESOURCES

- Low-cost, large-scale hydrogen production with CCUS
- New options include byproduct production, such as solid carbon

BIOMASS/WASTE

- Options include biogas reforming & fermentation of waste streams
- Byproduct benefits include clean water, electricity and chemicals

WATER SPLITTING

- Electrolyzers can be grid tied, or directlycoupled with renewables
- New direct water-splitting options offer longterm sustainable hydrogen

Low-cost hydrogen production from diverse domestic feedstocks & energy resources—enhancing long-term resiliency & opening regional market opportunities

Hydrogen is one part of a Comprehensive Energy Portfolio

H2@Scale: Enabling affordable, reliable, clean, and secure energy across sectors

- Hydrogen can address specific applications across sectors that are hard to decarbonize
- Today: 10MMT H₂ in the U.S.
- Economic Potential: 2 to 4x more

Strategies

- Scale up technologies in key sectors
- Continue R&D to reduce cost and improve performance, reliability
- Address enablers: harmonization of codes, standards, safety, global supply chain, workforce development, sustainable markets

Source: U.S. DOE Hydrogen and Fuel Cell Technologies Office, https://www.energy.gov/eere/fuelcells/h2scale

Key Programmatic Areas

Includes early stage R&D: Funding Opportunity Announcements (FOAs) for industry, universities and national labs, including consortia And includes later stage RD&D: Leverages private sector for large-scale demonstrations and cost-shared RD&D. Demos in TX, FL, Midwest, CA and more

Just Announced: \$64M for 18 projects including R&D and demonstrations at ports and datacenters, and a workforce development program . Includes collaboration with Advanced Manufacturing Office and Vehicles Office in EERE

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

R&D focus is on Affordability and Performance: DOE Targets Guide R&D

Key Goals: Reduce the cost of fuel cells and hydrogen production, delivery, storage, and meet performance and durability requirements – guided by applications specific targets

[†]Based on commercially available FCEVs
 ^{*}Based on state of the art technology
 ^{**}Based on commercial FCEV analysis at 3,000/yr

⁺Storage costs based on preliminary 2019 storage cost record

^TFor range: H2 production from natural gas (NG), delivered dispensed at today's (2018) stations (~180kg/d)

*For range: Assumes high volume manufacturing in 1) H2 production costs ranging from \$2/kg (NG) to \$5/kg (electrolysis manufactured at 700 MW/year), and 2) Delivery and dispensing costs ranging from \$3/kg (advanced tube trailers) to \$5/kg (liquid tanker or advanced pipeline technologies). ** Range assumes >10,000 stations at 1,000 kg/day capacity, to serve 10 million vehicles

HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE

Electrolysis Cost – Recent Independent Analyses

Today's Polymer Electrolyte Membrane (PEM) electrolyzers require 65 75% cost reduction

\$2/kg H2 is achievable at about \$0.03/kWh electricity cost and high utilization

H₂ Cost Dependence on Electricity

10 CAPEX USD 450/kWe 8 10¢/kWh 8¢/kWh 6 \$/kg H₂ 6¢/kWh 4¢/kWh 2¢/kWh 0¢/kWh/ 2 curtailmen 0 \$0.03/kWh 6000 8000 2000 4000 Full load hours can get <\$2/kg</pre> Source: IEA Hydrogen Future Report 2019

Today's hydrogen cost from PEM electrolyzers: ~ \$5 to \$6/kg at \$0.05 to \$0.07/kWh

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

Identifying Hydrogen Cost Drivers is Key

Examples of H2@Scale Analysis and Demonstration Projects

Assessing resource availability. Most regions have sufficient resources.

New H2@Scale demonstration projects cover range of applications

*Includes 1 project by Office of Nuclear Energy

Hydrogen Demand Potential

Example of H2@Scale Demonstration Projects

Demonstration of H2@Scale: Different regions, hydrogen sources and end uses

Те	xas	Flo	orida	Site selection	on in process
Total Budget	Wind, Solar,	Total budget	Solar-to-H ₂ with	Total Budget	Nuclear-to-H ₂ for
\$10.8M	RNG/Waste	\$9.1M	End Uses	\$7.2M	at-Plant Use

Examples of H2@Scale Demonstration Projects -2020

Demonstration of H2@Scale: Different regions, hydrogen sources and end uses

Marine A	Application	H ₂ for Da	ta Center	H ₂ for Steel	Production
Total Budget \$16M	Electrolyzer and fuel cell for marine application	Total Budget \$13.7M	PEM fuel cell for data center power	Total Budgets \$5.7M & \$7.2M	DRI-process and grid-interactive steelmaking
PIER 130" x 40" x 7" Floating Barge Lischical Compressor High Pressure High	H ₂ Delivery Tuck H ₂ Transfer Davit H ₂ Transfer Davit H ₂ Producton (Electrolysis) Euchrolysis Controls Burkering System		ety, and Analysis Safety and site lessons learned Logistics and scalability Liquid H2 Site Hydrogen H2 Fuel Cell Data Center Data Center	65% H2-35% H20 65% H2-35% H20 506C Eshaurts @>95% CD, to storage/utilization 90% H2-10% H20 gas heating Natural Gos (pre-hoving burner)	Reduction of 30% in energy
Power for Ballery Charging Hybrid Electric Vessel	CH ₂ Vessel Supply	DC bus system: fuel cell + battery Single or shared load capability Fast response and grid support	1.5 MW fuel cell Backup power performance testing Electric Grid The second performance testing Dynamic operation and control	H ₂ Storage	1 ton/wk iron prod.; scaled to
	ritime H_2 refueling on up to 530 kg H_2 /day		o meet data center nd future scale up	Grid Integration Scrap - Line - Carbon Scrap - Steel - Fe	HR8 5,000 1 Tel 1,2,5,6, and 8 1 Tel 1,2,5,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7

First Carbon-Free, "Power-to-Gas" System in U.S.

Flagship Power-to-gas Project

Funded By DOE EERE In Partnership With Southern California Gas Company (SoCalGas)

- Approx. \$2.5 million funded through EERE's Solar, Hydrogen and Fuel Cells, and Bioenergy Offices along with cost share by SoCalGas
- Process uses a low-temperature water electrolyzer to produce hydrogen from renewable power, then feeds the hydrogen and carbon dioxide into a bioreactor where methanogens produce methane and water
- With minor filtration, the product gas from the bioreactor will meet pipeline quality, allowing it to be injected into the **existing natural gas infrastructure**

- Utilizes H₂+ CO₂ to generate pipeline quality natural gas (> 97% CH₄)
- **Biocatalyst used in the process** -Methanothermobacter thermautotrophicus

Biomethanation Process:

 $CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$

 Industry and lab partners: Southern California Gas Company, NREL and Electrochaea

Press Release

https://www.nrel.gov/esif/partnerships-southern-california-gas.html

Located at NREL, Golden, CO

H2@Scale activities include systems and grid integration

Flexibility will be needed to address grid challenges: high ramp rates and demand fluctuations

Predicted 2025 California EV Charging Load Profile (Weekday) shows impact of demand profiles on the grid

DOE national lab tests show dynamic response potential of electrolyzers. Coupling with EV charger, solar underway

Idaho National Lab & National Renewable Energy Lab results. Direct fast charger impact project underway 2020-2021

Source: CEC/NREL Report https://www.nrel.gov/docs/fy18osti/70893.pdf

Cross-cutting Materials Compatibility R&D

H-Mat Consortium conducts R&D on hydrogen effects on polymers and metals

- Enabling the safe use of hydrogen across applications and the development of harmonized codes and standards
- Addressing hydrogen blending with natural gas, reducing expansion of seals, improving life of vessels through improved understanding of crack nucleation, enhancing fracture toughness of high-strength steels, and more

Website: energy.gov/eere/fuelcells/h-mat-hydrogen-materials-consortium

• Over 25 partners with industry, labs, universities

Email: h-matinfo@pnnl.gov

SM

(I)-Mat

For More Information

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE

20% hydrogen blends could enable a doubling¹ of U.S. renewables consumption

and can enable: Cross-sectoral emissions reductions Grid resiliency Terawatt hours of energy storage

 U.S. Projected Renewable Energy Consumption in Power Generation in 2019: 702.7 TWh (Source: AEO 2020)
 20% hydrogen blend in the U.S. by volume = 16 MMT/year, which would require ~750 TWh of electricity if produced via electrolysis. (Source: Elgowainy, et al, 2020)

Long Duration Energy Storage and Flexible Power Generation Analysis

NREL's Techno-Economic Analysis of Long Duration Energy Storage- Preliminary Results across Technologies

Natural gas combined cycle (NG-CC) is the lowest cost option today Wide Range of Costs for Various Technologies \$200 to >\$1,000/MWh

Source: Hunter, et. al., 2020, NREL- publication in process U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

Future Scenario: Shows PEM fuel cells (for Heavy Duty Vehicle market), salt caverns + coproduction of H_2 may be most economically competitive for 120 h storage

Benefits and Impacts Analyses Underway – Argonne Example

Two New Efforts: Workforce Development, Training and STEM

Hydrogen Education for a Decarbonized Global Economy (H2EDGE)

Objectives:

- Enhance workforce readiness through training and education (T&E)
- Develop T&E materials and deliver professional training courses and university curriculum content
- Collaborate with industry and university partners to develop certifications, credentials, qualifications, and standards for training and education needs
 Recipient: EPRI
 Partners include: GTI, OSU, Purdue, UD, EA

June 2020: DOE EERE announces \$20M investment at U of TN to advance workforce development in emerging energy fields, partnering with ORNL and Oak Ridge Institute (ORI)

- ORI will develop model workforce development program and partnerships with universities, agencies, and national labs
- Focuses on EERE related technologies including hydrogen and fuel cells

Collaboration

"No one can whistle a symphony. It takes a whole orchestra to play it." - H. Luccock

Examples of Global Collaboration

Coordinating across global partnerships: IPHE, Ministerials, Mission Innovation, IEA, etc. Global Center for Hydrogen Safety established to share best practices, training resources and information

The International Partnership for Hydrogen and Fuel Cells in the Economy

Enabling the global adoption of hydrogen and fuel cells in the economy

|--|

Elected Chair and Vice-Chair, 2018

Key Activities: Harmonization of codes & standards, Information sharing on safety, policies, regulations, analysis, education. Task force on developing H₂ production analysis methodology to facilitate international trade, global RD&D monitoring

www.aiche.org/CHS

Hydrogen and Clean Energy Ministerials Mission Innovation Hydrogen Challenge International Energy Agency

New Chair: Dec 2020: The Netherlands Vice Chairs: U.S. Japan

Boundaries of the Carbon Accounting system Well-to-tank Cradle-to-Gate Cradle-to-Gate Cradle-to-grave Whole life cycle GHG emissions (Source: Abad et al., Energy policy 138 (2020) 111300) Iuation and global trade in 'clean' hydrogen by

20

Hydrogen Production Analysis Task Force (H2PA TF)

Addressing Priority from Industry and Governments

• Harmonize approach and develop framework to facilitate global trade of hydrogen

Scope

• Develop a mutually agreed upon analytical methodology for determining greenhouse gas (GHG) and other emissions associated with H2 production.

Next Steps and Engagement

• Continue to engage stakeholders, industry and experts to develop framework for methodology

Application of methodology will help facilitate market valuation and global trade in 'clean' hydrogen by recommending a common approach with adoption not mandatory and subject to each member's discretion and circumstance.

California LCFS / TÜV SÜD CMS70 AFHYPAC / BEIS / CEN-CENELEC / CertifHy Embedded Feedstocks & Transport / Refuelling / End Transport / End Hydrogen Emissions Energy Inputs Distribution Supply points Use Of life Transmission Generation in CAPEX Point of Point of Use Production Boundaries of the Carbon Accountin system

What can you do?

Get involved and help spread the word!

Follow @the_iphe

Introducing the IPHE E&O Working Group Early Career Chapter

- Established by IPHE's Education & Outreach (E&O) Working Group to promote international H₂ and fuel cell awareness and launch a platform for the next generation of H₂ and fuel cell leaders
- Open to students, post-docs and early career professionals

Learn more: iphe.net/early-career-chapter Membership form: <u>https://forms.gle/gUnWyV7gU4QqoHLm7</u>

Stephanie Azubike Chair

Priya Buddhavarapu Co-Chair

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE

Resources and Events

Save the Date

June 8-10, 2021 Annual Merit **Review and Peer Evaluation Meeting** for the Hydrogen and Fuel Cells Program in Arlington, VA

Resources

HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE

Hydrogen

Thank You

Dr. Sunita Satyapal

Director, DOE Hydrogen and Fuel Cells Program Sunita.Satyapal@ee.doe.gov

Looking for more info? #H2IQ

hydrogen.energy.gov