Coriolis Meters
for Hydrogen
Dispensing
Measurement

John Daly
NA Lead Flow Specialist
GE Measurement and Control Solutions

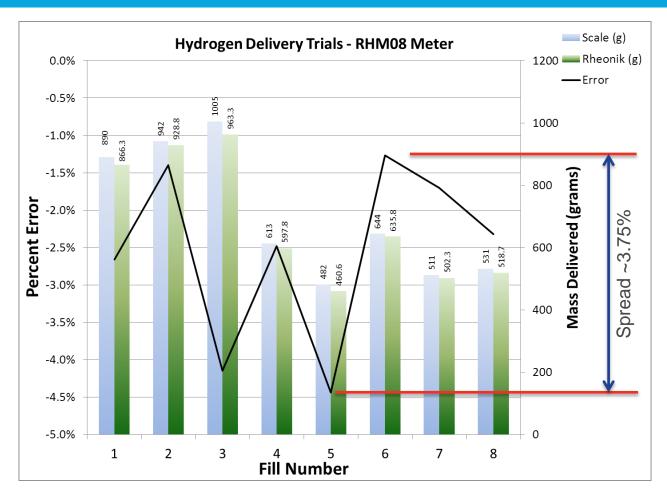
Flow Technologies at GE MS

Clamp-on Ultrasonic

- Install on existing pipes
- Low over cost of ownership
- Focused on liquid but also for gas

Wetted Ultrasonic

- Higher accuracy
- Difficult applications
- Very low operational costs
- Strong performance for liquid and gas


Coriolis

- Direct mass measurement
- High accuracy over wide range
- Liquid and Gas
- Pipes up to 12"

Vortex

- Robust, multifunction alternative to DP
- Strong in small pipes less than 4"
- Very large pipes as insertion device

Current Status of Technology

Meter to 900 Bar available

High Turndown: 1000:1

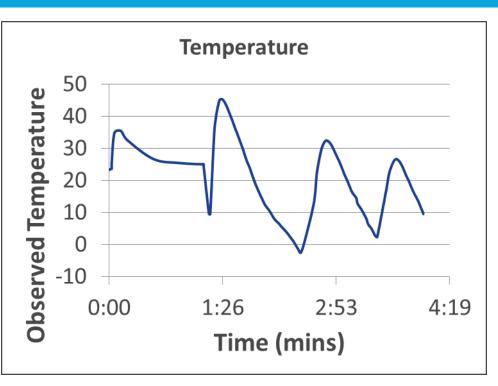
Pulse and Digital outputs for totalization

Accuracy to 4.5% based upon water calibration of meter

Repeatability to 3.75%

Flows up to 10kg/min possible

Coriolis technology shows great promise as a fiscal metering solution for Hydrogen dispensing.


Ongoing Development

Reduction in repeatability spread

 Thought to be a temperature gradient issue. Investigating multiple temperature sensor solutions

Zero shift (water cal to HP gas)

 High pressure causes stiffness in the meter piping – developing a suitable correction function

Market Needs and Challenges

Needs

- Performance Goals
 - Accuracy 1% to 2%
 - Repeatability 1%
- Suitability for Dispensing
 - Electronics for dispenser installation
 - Modbus connectivity etc.
 - Sealability for W&M

Challenges

- Lack of facilities to test HP Hydrogen flow
- Cost volume will bring economy

