

Advanced Fuel Reformer Development

Putting the 'Fuel' in Fuel Cells

Subir Roychoudhury

Precision Combustion, Inc. (PCI), North Haven, CT

Shipboard Fuel Cell Workshop March 29, 2011

Precision Combustion, Inc.

- Established in 1986
- Privately held, Small Business
- Located in North Haven, CT
- Two major platform technologies under development
 - RCL® catalytic combustors for gas turbines applications
 - <u>Microlith® catalytic reactors</u> for multiple markets
 - 65 patents

38,000 sq ft total space

- Collaborators include: Large & small corporations, Universities,
- Develops advanced catalytic reactors & systems; manufactures limited-volume catalytic products
 - \rightarrow for fuel reformation for syngas/H₂ generation for fuel cell application

PCI Technology Overview

- RCL® Catalytic Combustion
 - Best New Technology Award 2006 IGTI, ASME
 - Full scale GT engine testing underway at OEM's

- Microlith® Catalytic Reactors Tibbetts & Army Innovation awards
 - Catalytic Burners & Converters
 Anode gas & Start burners, Stirling Engine Burners
 Catalytic after-treatment automotives
 - Ultra-compact Fuel Processing Reactors & Turnkey Systems Stack-specific solutions Small & Large scale
 - Regenerable Sorption Reactors:

Chem-bio filters

Air revitalization for long-duration manned spaceflight

Microlith Technology

High surface area & high mass transfer capability at comparable △P

Comparison of Substrate Performance

(Steady State Operation w. propylene in air at 350 C, vel. 1.5 m/s.)

Equivalent conversion with 20-fold size reduction.

More Efficient Use of Catalyst Surface Area

Microlith Technology

Small, durable, catalytically coated metal mesh with very high surface area

Continuous catalyst coating line with batched furnace and rigorous QA, QC in place

Microlith® Catalytic Reactors

Ultra compact
Short contact time
Rapid thermal response
High heat & mass transfer
High surface area/unit volume
Low cost

PCI holds multiple patents on catalyst structure, reaction methods and apparatus

Stack Fueling

- Startup, stack heatup
- Load following
- Auxiliary startup power needs

Reformer Controls

- Automated start, shutdown, load changes
- Real-time air/fuel/water flow control; continuous monitoring during steady state
- Closed-loop feedback control w. safety interlocks
- Fuel flexibility: capability of sensing & operating on different fuels
- Control algorithm interface with stack controller & power conditioner

Fuel Cell Subsystems

PCI supporting ONR in these areas

Challenges in Developing Fuel Cell Based Power Systems

- High overall efficiency, power density, and specific power to be practical & viable
- Water neutral operation to avoid/minimize water storage
- Fuel Cell-quality reformate (sulfur, HC and CO cleanup)
- Reduced system complexity
- Optimized BOP components to reduce parasitics
- Robust & intelligent control system
- Fuel flexibility
- Performance durability
- Reactor & system modularity
- Thermal integration to maximize overall system efficiency
- Simplified packaging & manufacturing to reduce cost

Development at PCI

Reforming Processes:

Auto-thermal reforming
Catalytic Partial Oxidation
Steam Reforming
Scales: I kWe – 5 MWe

Fuel Processing Reactors:

WGSR, PROX, Sulfur Cleanup Burners (startup, AGB, purge) Scales: I – 250 kWe

Fuels:

Liquids: Diesel, JP-8, Jet-A, E-85 FT fuels, Biofuels, Gasoline Gases: Natural Gas, Propane

BOP:

Pumps, Blowers, Nozzles
Igniters, HX, Steam generation,
F/A/S mixing, Controls
System Integration

Enabling 'Fuels' for 'Fuel Cells'?

Reforming Technologies at PCI

I. Catalytic Partial Oxidation (CPOX)

$$2 CH_4 + O_2 \rightarrow 4 H_2 + 2CO \{H_2O + CO_2 - \Delta H\}$$

$$3 CH_4 + O_2 + H_2O \rightarrow 7 H_2 + 3 CO \{H_2O + CO_2 - \Delta H\}$$

$$CH_4 + H_2O \rightarrow 3 H_2 + CO \{H_2O + CO_2 + \Delta H\}$$

5 MWth CPOX

5 kWth & I MWth Diesel/JP-8 ATR, St. gen. S-trap, Injector

3 kWth Diesel SR w. endo & exothermic sections

Fuel Purification Technologies at PCI

- Water Gas Shift Reactor (WGSR)
 CO + H₂O → H₂ + CO₂ {CH₄ △H}
- Preferential Oxidation of CO (PROX) CO + $\frac{1}{2}$ O₂ {H₂} \rightarrow CO₂ {H₂O - Δ H}

- Sulfur Cleanup
 Liquid and gas phase approaches
- Pressure Swing Adsorption (PSA)
 H₂ selective sorbents

ATR + WGSR Development

ATR w. fuel/air/steam injector, igniter, steam generating HEX, sulfur trap 10 50FC HX H2 Cleanup Separation, PEMIHTPEM 5 kWth WGSR Sulfur Optional Steam ~I MWth Trap HX ATR+ WGSR Generator

~I MWth

25 kWth

Integrated ATR

Considerations during reformer development:

- Reactor design: space velocity, linear velocity, flow dynamics
- <u>Catalyst formulation</u>: synthesis, application, physical properties
- Operating parameters: Steam-to-carbon, O/C, catalyst bed temp
- Reactant introduction: fuel/air/steam mixing
- Thermal integration: steam generation, sulfur/CO clean-up

ATR Reformate Compositions

(mole %, wet basis)

[*: Fn of St/C]

- Reforming efficiency (LHV reformate/LHV feed) = ~85%
- Sulfur removal to <1 ppm
- Current PCI's target for coke precursors (i.e., C2s and C3s) is <50 ppm_v total

Reformer + Stack Interface Testing

JP-8 w. low S (Average ~15 ppm $_{\rm w}$ S); Higher HC's < 20 ppm. Operated with I kW $_{\rm e}$ SOFC stack – Stable Operation w/o coking for 1100 hours

Operation w. Sulfur Containing Fuels

ATR performance and durability testing w. 400 ppm, sulfur JP-8

- Sulfur speciation: ASTM D5623; Total sulfur analysis: ASTM D2622 (Wavelength Dispersive X-Ray Fluorescence)
- Complete fuel conversion, stable LHV-based efficiency & H₂+CO mole % over time.
- Total organics (primarily C2s, C3s) <150 ppm, (wet basis) at end of test.
- Fuel-bound sulfur converted to H₂S and removed (<1 ppmv) downstream of reforming reactor

Integrated ATR + WGSR

25 kW_{th} ATR w. fuel/air/steam injector, igniter, steam generating HX, sulfur trap, single stage WGSR Convert fuels into low CO (<2-3 vol.%), sulfur free (<1 ppm_v) reformate: HT-PEM stack ready

WGSR Performance

Order of magnitude reduction in methanation side reaction

Compact, Heat-Integrated 3 kW_{th} CSR

	Exptl Product Mol %, St/C=3.0, P = 1 atm	Equilibrium Mol. %, St/C=3.0, I atm, 650°C	
H ₂	69-71	70.8	
СО	10.7-14.0	11.8	
CO ₂	14.0-19.3	15.6	
CH₄	0.8-4.0	1.9	
LHV-based efficiency (w. CH ₄)	~119% (synfuel)	115%	

- CSR prototype consists of catalytic exothermic (burner) & catalytic endothermic (CSR).
- Catalytic burner instead of flame-stabilized burner increases thermal uniformity, distribution, durability & control.
- Operation at S/C of 3.0 & 4.0 (without coke formation); Fuels: n-C12, IPK (similar to S-8), natural gas, propane
- Operation very sensitive to fuel-sulfur

500-hr Durability of Heat-Integrated CSR

Equilibrium vs. experimental	H ₂	со	CO ₂	CH₄
Equil. mole %	72	10	16	0.27
PCI prototype at ~I kWth, mole %	72	10	17	0.58

Scale-up: 40 kWth ATR Prototype

Scale-up (200 kWth Turnkey at Philly)

• Component performance demonstrated (c.2008)

Scale-up: I MW_{th} ATR System

Modular, 250 kW $_{\rm e}$ Fuel Processing System consisting of fuel/air/steam injector, ATR, steam generator hex, and sulfur clean-up

Scale-up: I MWth Industrial ATR

I MWth Microlith® ATR to reform VOC from process waste streams

• Operation for over 6 months in industrial environment

5 MW(th) Natural Gas Reformer

- Reform pipeline natural gas; 5 MW(th); → H₂ + CO
 - Prototype tested & delivered.

- Initial testing successfully completed
- 1000 hrs of sub-scale durability completed (Target 8000).

Benefits of Biofuels

- Bio-fuels: Bio-alcohols, Bio-diesels, Tuned distillates
- Minimized System Complexity
 - · Avoids bulky sulfur cleanup
 - Avoids sorbent recharge and disposal needs
 - Reduction of auxiliary components
- Greater Operational flexibility
 - Wider O/C, S/C
 - Minimized system design constraints
- Higher Reforming Efficiency → Greater System Efficiency
 - Enhanced reaction kinetics
 - Improved fuel properties
- Longer Life
 - Catalyst, Stack performance
 - Minimized coking
- Readily scalable to shipboard scales
 - Compact, 250 kWe and higher, modular systems feasible

Summary

- Reformer requirements for stack fueling:
 - System size and weight: Process intensification
 - Reforming efficiency
 - Fuel flexibility
 - <u>Durability</u>: multiple 1000+ hrs of operations
 - Reformate cleanup (sulfur_and CO)
 - Water neutrality
 - Thermal and flow integration with stack
 - Full **BOP** implementation
 - Control hardware, protocol/algorithms
 - Stack-quality reformate production & long term testing
 - Cost and scale-up

Acknowledgment

We are grateful to the ONR & DOE for their support,

And

The engineers and technicians at PCI.

