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Precision Combustion, Inc.
 

38,000 sq ft total space 

• Established in 1986 

• Privately held, Small Business 

• Located in North Haven, CT 

• Two major platform technologies under development 

– RCL® catalytic combustors for gas turbines applications 
– Microlith® catalytic reactors for multiple markets 
– 65 patents 

• Collaborators include: Large & small corporations, Universities, ….. 

• Develops advanced catalytic reactors & systems; manufactures limited-volume catalytic products 

Æ for fuel reformation for syngas/H2 generation for fuel cell application 
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PCI Technology Overview
 

• RCL® Catalytic Combustion 
• Best New Technology Award 2006 – IGTI, ASME 
• Full scale GT engine testing underway at OEM’s 

• Microlith® Catalytic Reactors – Tibbetts & Army Innovation awards 

• Catalytic Burners & Converters 
Anode gas & Start burners, Stirling Engine Burners 
Catalytic after-treatment - automotives 

• Ultra-compact Fuel Processing
 
Reactors & Turnkey Systems
 

Stack-specific solutions
 

Small & Large scale
 

• Regenerable Sorption Reactors: 
Chem-bio filters 
Air revitalization for long-duration manned spaceflight 
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Microlith Technology 

Cells/in2 

GSA (m 2/l) 
Channel Length (in) 

Length to Diameter Ratio (L/d) 
Operating Temperature ( oC) 

Frontal Open Area 

400 
2.64 

3.0 - 5.0 
70 - 120 

1050 - 1200 
70 

2500 
6.3 

0.003 
0.3 

1050 - 1200 
72 

Microlith®Conventional Monolith 

Monolith wall 

Monolith wall 

Monolith wall 

Boundary layer formation 

Mixing regions 

Boundary layer formation 

High surface area & high mass transfer capability at comparable ∆P 
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Comparison of Substrate Performance 
(Steady State Operation w. propylene in air at 350 C, vel. 1.5 m/s.) 

2.54 cm(1”) long monolith 
7 Microlith elements 

(Length = 0.11cm, 0.042”) 

5.3 cm/s 
7620 cm2 

75 

77 cm/s 
568 cm2 

78 

Equivalent conversion with 20-fold size reduction. 

More Efficient Use of Catalyst Surface Area 

Mass Transfer Coeff (kc) 
GSA 

Observed Conversion (%) 



Microlith Technology
 

Small, durable, catalytically coated metal mesh with Microlith® Catalytic Reactors
very high surface area Ultra compact 

Short contact time 
Rapid thermal response 

High heat & mass transfer 
High surface area/unit volume 

Low cost 

Continuous catalyst coating line with batched furnace 
and rigorous QA, QC in place 

PCI holds multiple patents on catalyst structure, reaction methods and apparatus 
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• Startup, stack heatup 
• Load following 
• Auxiliary startup power needs 

Stack Fueling 

Fuel Processor 

(ATR, injector, 
steam generator, 

sulfur trap, igniter, 
fuel & water pump, 

air blower, 
fuel/air/water 

control) 

SOFC 

(Stack, 
cathode air blower, 
Power conditioning, 

stack controller, 
AGB) 

Reformate Flow 

Control 

Thermal balance 

é 

Fuel, Air, Water 



Reformer Controls
 

• Automated start, shutdown, load changes 

• Real-time air/fuel/water flow control; continuous monitoring during steady state 

• Closed-loop feedback control w. safety interlocks 

• Fuel flexibility: capability of sensing & operating on different fuels 

• Control algorithm interface with stack controller & power conditioner 
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Reformer Stack 

Desulfurizer 

System 
Controls 

Integration 

Other 
WGS 
SOX 

Pumps, 
Blowers, 
Other BOP 

HX 

Power 
conditioning 

PCI supporting ONR in these areas 

Fuel Cell Subsystems 



Challenges in Developing Fuel Cell Based Power Systems
 

• High overall efficiency, power density, and specific power to be practical & viable 

• Water neutral operation to avoid/minimize water storage 

• Fuel Cell-quality reformate (sulfur, HC and CO cleanup) 

• Reduced system complexity 

• Optimized BOP components to reduce parasitics 

• Robust & intelligent control system 

• Fuel flexibility 

• Performance durability 

• Reactor & system modularity 

• Thermal integration to maximize overall system efficiency 

• Simplified packaging & manufacturing to reduce cost 
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Development at PCI 

Reforming Processes: 
Auto-thermal reforming 

Catalytic Partial Oxidation 
Steam Reforming 

Scales: 1 kWe – 5 MWe Fuel Processing Reactors: 
WGSR, PROX, Sulfur Cleanup 
Burners (startup, AGB, purge) 

Scales: 1 – 250 kWe 
Fuels: 

Liquids: Diesel, JP-8, Jet-A, E-85 
FT fuels, Biofuels, Gasoline 

Gases: Natural Gas, Propane BOP: 
Pumps, Blowers, Nozzles 

Igniters, HX, Steam generation, 
F/A/S mixing, Controls 

System Integration 

Enabling ‘Fuels’ for ‘Fuel Cells’? 



 

Reforming Technologies at PCI
 

1. Catalytic Partial Oxidation (CPOX) 

2 CH4 + O2 Æ 4 H2 + 2CO {H2O + CO2 - ∆H} 

5 kWth Diesel 5 MWth CPOX 
CPOX 

2. Catalytic Autothermal Reforming (ATR) 

3 CH4 + O2 + H2O Æ 7 H2 + 3 CO {H2O + CO2 - ∆H} 

5 kWth & 1 MWth Diesel/JP-8 ATR, St. gen. S-trap, Injector 

3. Catalytic Steam Reforming (CSR) 

CH4 + H2O Æ 3 H2 + CO {H2O + CO2 + ∆H} 

3 kWth Diesel SR w. endo & exothermic sections 
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Fuel Purification Technologies at PCI
 

•	 Water Gas Shift Reactor (WGSR) 
CO + H2O Æ H2 + CO2 {CH4 - ∆H} 

•	 Preferential Oxidation of CO (PROX) 
CO + ½ O2 {H2}Æ CO2 {H2O - ∆H} 

•	 Sulfur Cleanup 
Liquid and gas phase approaches 

•	 Pressure Swing Adsorption (PSA) 
H2 selective sorbents 
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ATR + WGSR Development 
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Integrated ATR
 

Considerations during reformer development: 

• Reactor design: space velocity, linear velocity, flow dynamics 

• Catalyst formulation: synthesis, application, physical properties 

• Operating parameters: Steam-to-carbon, O/C, catalyst bed temp 

• Reactant introduction: fuel/air/steam mixing 

• Thermal integration: steam generation, sulfur/CO clean-up 
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ATR Reformate Compositions 
(mole %, wet basis) 

ATR HEX Sulfur Trap F/A/S 
Atomizer 

• Reforming efficiency (LHV reformate/LHV feed) = ~85% 

• Sulfur removal to <1 ppm 

• Current PCI’s target for coke precursors (i.e., C2s and C3s) is <50 ppmv total 

WGSR 

Fuel S/C O/C H2O H2 N2 CO CO2 CH4 C2 + C3 S 

JP-8 (Equil) 0.90 0.95 12.1 29.5 37.5 15.3 5.7 0.01 -

JP-8 (Exptl) 0.90 0.95 12.7 28 37.7 16.3 5.4 0.16 <50 ppm <1 ppm 

After WGSR 10-15 30-35 39 1.6-4* 12-14 0.3 

[*: Fn of St/C] 



Reformer + Stack Interface Testing
 

JP-8 w. low S (Average ~15 ppmw S);  Higher HC’s < 20 ppm.
 

Operated with 1 kWe SOFC stack – Stable Operation w/o coking for 1100 hours
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Operation w. Sulfur Containing Fuels
 

ATR performance and durability testing w. 400 ppm sulfur JP-8w 

400 ppmw nat. occur. S JP-8
 

O/C = variable (closed-loop); St/C = 0.90
 

• Sulfur speciation: ASTM D5623; Total sulfur analysis: ASTM D2622 (Wavelength Dispersive X-Ray Fluorescence) 

• Complete fuel conversion, stable LHV-based efficiency & H2+CO mole % over time. 

• Total organics (primarily C2s, C3s) <150 ppmv (wet basis) at end of test. 

• Fuel-bound sulfur converted to H2S and removed (<1 ppmv) downstream of reforming reactor 
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Integrated ATR + WGSR
 

φ 6.6 6.46.46.4ATRATR 

17.317.317.3 

SulSulffur Trapur Trap 5.65.65.6 

5.35.35.3WGSRWGSR 
φ 5.0 

25 kWth ATR w. fuel/air/steam injector, igniter, steam generating HX, sulfur trap, single stage WGSR 

Convert fuels into low CO (<2-3 vol.%), sulfur free (<1 ppm ) reformate: HT-PEM stack readyv
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WGSR Performance 
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L = 1 ft; D = 1.5" (V = 0.35 L) 

Approx. 1.1 kg 

1.90.8-4.0CH4 

21 

Compact, Heat-Integrated 3 kWth CSR 

• CSR prototype consists of catalytic exothermic (burner) & catalytic endothermic (CSR). 

• Catalytic burner instead of flame-stabilized burner increases thermal uniformity, distribution, durability & control. 

• Operation at S/C of 3.0 & 4.0 (without coke formation); Fuels : n-C12, IPK (similar to S-8), natural gas, propane 

• Operation very sensitive to fuel-sulfur 

Exptl Product Mol %, 
St/C=3.0, P = 1 atm 

Equilibrium Mol. %, 
St/C=3.0, 1 atm, 650°C 

H2 69-71 70.8 

CO 10.7-14.0 11.8 

CO2 14.0-19.3 15.6 

LHV-based efficiency (w. CH4) ~119% (synfuel) 115% 



500-hr Durability of Heat-Integrated CSR
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Equilibrium vs. experimental H2 CO CO2 CH4 

Equil. mole % 72 10 16 0.27 

PCI prototype at ~1 kWth, mole % 72 10 17 0.58 

Shipboard Fuel Cell Workshop; Washington, D.C. ◊ March 2011 22 



Scale-up: 40 kWth ATR Prototype
 

23
23
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Scale-up (200 kWth Turnkey at Philly)
 

• Component performance demonstrated (c.2008)
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Scale-up: 1 MWth ATR System 

Modular, 250 kWe Fuel Processing System consisting of fuel/air/steam injector, 
ATR, steam generator hex, and sulfur clean-up 
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Scale-up: 1 MWth Industrial ATR 


1 MWth Microlith® ATR to 
reform VOC from process waste 

streams 

• Operation for over 6 months in industrial environment 
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5 MW(th) Natural Gas Reformer
 

• Reform pipeline natural gas; 5 MW(th); Æ H2 + CO 

– Prototype tested & delivered. 

• Initial testing successfully completed 

• 1000 hrs of sub-scale durability completed (Target 8000). 
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Benefits of Biofuels
 

• Bio-fuels: Bio-alcohols, Bio-diesels, Tuned distillates 

• Minimized System Complexity 

• Avoids bulky sulfur cleanup 

• Avoids sorbent recharge and disposal needs 

• Reduction of auxiliary components 

• Greater Operational flexibility 

•  Wider O/C, S/C  

• Minimized system design constraints 

• Higher Reforming Efficiency → Greater System Efficiency 

• Enhanced reaction kinetics 

• Improved fuel properties 

• Longer Life  

• Catalyst, Stack performance 

• Minimized coking 

• Readily scalable to shipboard scales 

• Compact, 250 kWe and higher, modular systems feasible 
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Summary
 

• Reformer requirements for stack fueling: 

• System size and weight: Process intensification 

• Reforming efficiency 

• Fuel flexibility 

• Durability: multiple 1000+ hrs of operations 

• Reformate cleanup (sulfur and CO) 

• Water neutrality 
• Thermal and flow integration with stack 

• Full BOP implementation 

• Control hardware, protocol/algorithms 

• Stack-quality reformate production & long term testing 

• Cost and scale-up 
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