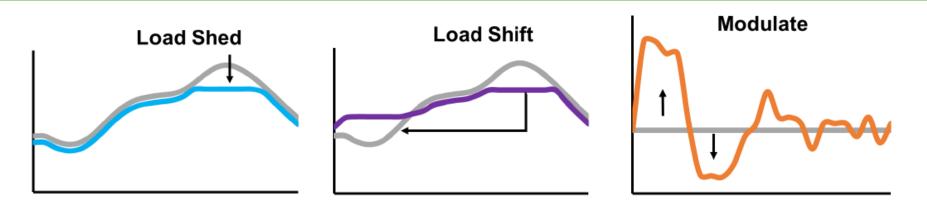


Office of ENERGY EFFICIENCY & RENEWABLE ENERGY


GEB Technical Report Webinar Series: Whole-Building Control, Sensing, Modeling & Analytics

Amir Roth, BTO Janet Reyna, Dane Christensen, NREL Draguna Vrabie, Veronica Adetola, PNNL

May 19, 2020

Grid Management 101

- Supply/demand matching at multiple time scales
 - Bulk energy day/hour/15-min ahead
 - Fast acting services to trim or follow around the edges
 - Primarily generator dispatch
- Transmission & distribution constraint avoidance
 - Primarily shedding by large customers or aggregators
- Maintain power quality & support grid reliability

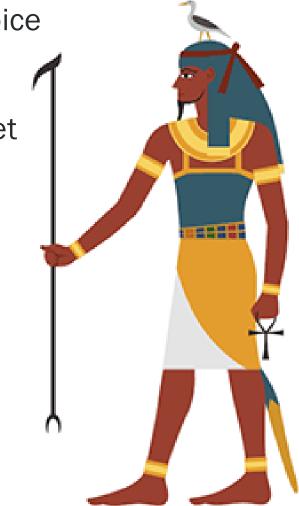
Grid Management Trends & Implications

• Trends

- More non-dispatchable generators
- Generation variability at distribution level (e.g., cloud cover)
- More frequent & longer peak-demand events
- More frequent & damaging "disasters" \rightarrow downtimes

• What do these mean?

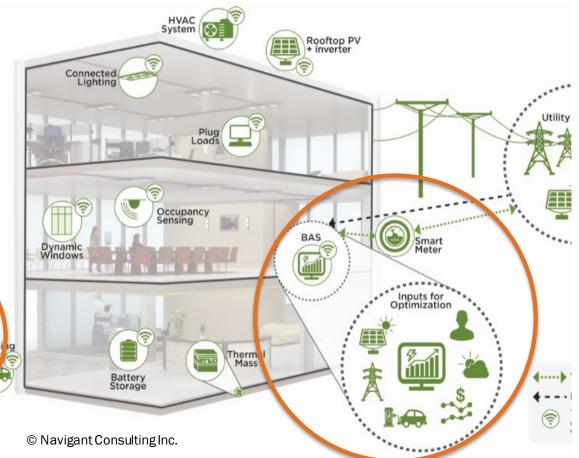
- Opportunity/need for behind-the-meter generation & storage
- Opportunity/need for dispatchable demand flexibility
- Buildings represent a significant opportunity
 - Flexibility: setpoints, lighting, appliances, plug-loads
 - Storage: thermal mass, batteries, Evs
 - On-site generation


EE, DR & GEB

- Energy Efficiency (EE)
 - Persistently low annual energy use
 - For a given value, flat "shapes" are preferred
- Demand Response (DR)
 - Short term, situational grid services (typically load reduction)
 - Direct (event-driven) or indirect (price-driven)
 - Can be manual, occupant preferences are tertiary
- Grid Interactive Efficient Buildings (GEB)
 - Continuous, integrated, optimized management of EE & DR
 - Automation is necessary, occupant preferences are primary

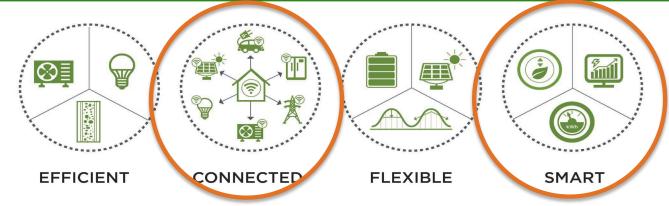
Benefits of GEB

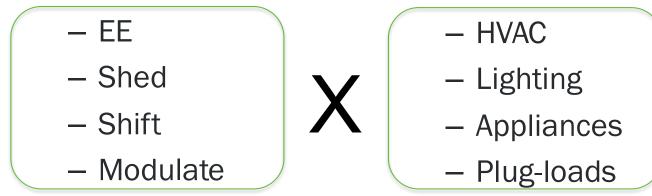
• For customers


- Improved comfort, level of service & choice
- Reduced energy costs
- Additional value streams from their asset
- For utilities & grid operators
 - Reduced generation operating costs
 - Reduced generation, T&D capital costs
- For all
 - Improved reliability & resilience
 - Environmental benefits

GEB Technical Report Series

http://energy.gov/eere/buildings/grid-interactive-efficient-buildings/


- HVAC, WH, & Appliances
- Lighting
- Envelope & Windows
- Whole-Building Controls, Sensors, Modeling & Analytics


GEB Technical Report Webinar Series

Торіс	Date	Time
Lighting & Electronics	May 26	2:00pm - 3:00pm ET
<u>Heating, Ventilation & Air</u> <u>Conditioning (HVAC)</u>	June 2	2:00pm - 3:30pm ET
Water Heating & Appliances	June 9	2:00pm - 3:00pm ET
Envelope & Windows	June 16	2:00pm - 3:30pm ET
<u>Integration – Building</u> <u>Equipment</u>	June 23	2:00pm - 3:00pm ET
<u>Integration – Distributed</u> Energy Resources(DERs)	June 30	2:00pm - 3:00pm ET

Whole-Building Controls, Sensors & Models

- This report emphasizes integration issues
 - How to integrate grid services via multiple end uses?
 - How to integrate multiple grid services with EE?
 - What are interoperability & security implications?

Integration Options

- Device
 - Aggregated outside the building, e.g., by manufacturer
 - Happening already, e.g., smart water-heaters
- End-use
 - E.g., Multiple HVAC devices provide space conditioning
- Building
 - Natural level of aggregation for metering & some control
 - In some cases, device/end-use level is also building-level

Multi-building

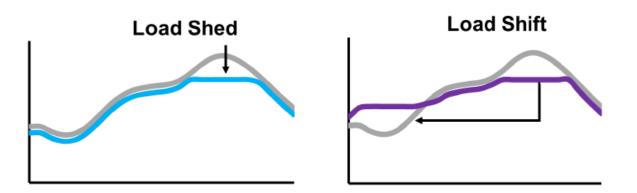
- Shared resources, e.g., district systems

Integration Criteria

• System performance

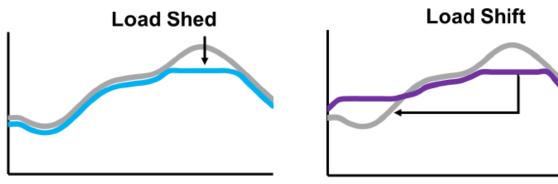
- Usually higher at greater levels of integration
- Greater flexibility to trade off, larger optimization space
- Important

Implementation complexity & cost

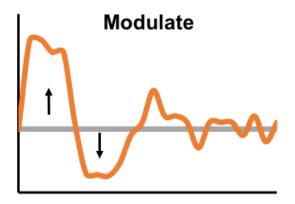

- Higher at greater levels of integration
- Also important
- Communication Latency
 - Higher at greater levels of integration
 - At some point, too high for some services

Integration Criteria, Cont'd

- Scalability
 - How many "atoms" at each aggregation level?
 - How do algorithms scale at different aggregation levels?
 - Fairly neutral (we think)
- Security
 - How many entry points into the building (aggregation)?
 - How much connectivity within the building (aggregation)?
 - Also fairly neutral (we think)


Assertion #1

- Shedding and shifting of HVAC loads should be implemented at the building* level
 - *In some cases, device or zone level is equivalent
 - Weather dependence and close coupling with building fabric
 - Occupant dependence and comfort implications
 - May need MPC for best results
 - May want to integrate PV because of weather dependence


Assertion #2

- Shedding and shifting of other end-uses can be provisioned at building, end-use, or device level
 - No weather dependence
 - No physical interaction between end-uses (some exceptions) makes integration a resource allocation problem
 - Transactive or other economic coordination mechanisms
 - Another option for integrating DERs
 - System performance vs. integration complexity decision

Assertions #3 and #4

- Energy neutral modulation services should be provisioned at the device level
 - Negligible interactions with shedding and shifting
 - Latency concerns dominate
- Open questions about non-energy neutral modulating services

Implementation Aspects

- Occupants, operators, and owners (03)
 - Which building stakeholders need to be involved & how?

• Execution

- Implementation & integration

Estimation & M&V

- Does service have to be committed in advance?
- How is service delivery verified?
- Only applicable for some services in some contexts

Quantitative analysis

- How is service modeled for design & planning purposes?

Report & Webinar Agenda

- Overview
 - Amir Roth, BTO
- Energy Efficiency
- Demand Response
 - Janet Reyna, NREL

Report & Webinar Agenda

- Shedding & shifting HVAC
 - Draguna Vrabie, PNNL
- Shedding & shifting other end-uses
 - Veronica Adetola, PNNL
- Modulation
- Interoperability & Cybersecurity
 - Dane Christensen, NREL

Energy Efficiency

Janet Reyna, NREL

Energy Efficiency (EE)

- EE: same level of service for less energy annually
 - Foundation of GEB
 - Initiatives that enhance EE directly support GEB

EE: 03

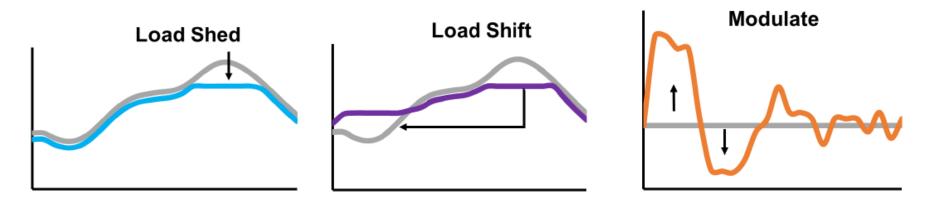
- Occupants and Operators
 - Behavior plays a significant role
- Owners
 - EE can be low on list of priorities
 - 3/30/300 rule

EE: Execution

- Passive components + HVAC, lighting, plug-loads
- Building Automation Systems (BAS)
 - Predominantly in large commercial
- HEMS (Home Energy Management Systems)
 - Smart thermostats + Home automation hubs
- On-going advancements
 - Wireless sensing
 - Control platforms
 - MPC, AFDD, BEM / controls integration
 - Point mapping, semantic modeling

EE: Characterization, M&V, Planning

- Characterization & planning
 - BEM (physics-based energy modeling)
 - Specific buildings for design & certification
 - Prototypes for large-scale planning
- M&V
 - Monthly (sub-)metering


EE: Recommendations

- Develop and deploy cost-effective controls, sensing, modeling and analytics to support EE throughout the building life cycle.
- Develop technical solutions that support the deployment and maintenance of digital monitoring and automation in both commercial and residential buildings.

Demand Response

Janet Reyna, NREL

Demand Response (DR)

- Modify load in response to grid need
 - Direct DR: event-driven equipment control (with overrides)
 - Indirect DR: voluntary price response
- Initiatives that enhance DR also support GEB

DR: 03

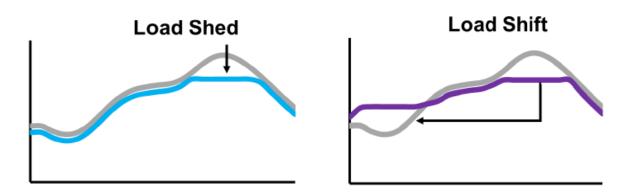
- Direct DR
 - No accounting for occupant preferences
 - Some programs allow occupant override
 - Acceptable for low-frequency events
- Indirect DR
 - Customer controls response magnitude & schedule

DR: Execution

- Direct DR 1.0
 - − Large commercial/industrial customers ← phone call
- Direct DR 2.0
 - One-way communication to device (e.g., compressor switch)
- Indirect DR
 - Programmed or manual scheduling
 - Smart-thermostat based TOU optimization
 - Some MPC in the commercial sector

DR: Characterization, M&V, Planning

- Characterization
 - Engineering calculations for large buildings
 - Device characterization & aggregation for small buildings
- M&V
 - Comparison to historic use (e.g., day with similar weather)
- Quantitative Analysis
 - Buildings are not explicitly designed for DR
 - Can BEM accurately calculate peak demand?


DR: Recommendations

 Develop requirements for shared, trusted metering and sensing for measuring and verifying the delivery of grid services.

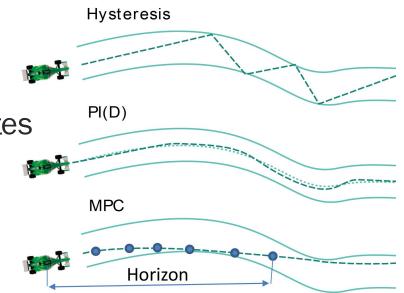
Shedding and Shifting HVAC

Draguna Vrabie, PNNL

Shed/Shift HVAC

- Use building thermal mass to shift HVAC load with minimal occupant impacts & "recovery" effects
 - Significant opportunity
 - Weather & occupancy dependence
- Enhancers
 - On-site generation, electrical and/or thermal storage
 - District thermal storage

Shed/Shift HVAC: 03


• Occupants

- Goal: no comfort impact
- Need: accurate, cost-effective, privacy-preserving methods of measuring comfort measures
- Need: feedback mechanisms to register preferences and change uncomfortable conditions
- Owners and operators
 - 3/30/300 rule

Shed/Shift HVAC: Execution

Key capabilities

- Optimize over time horizon
- Incorporate predictions & updates
- Support multiple objectives
- Adapt to changing context
- Manage uncertainty

Implementation challenges

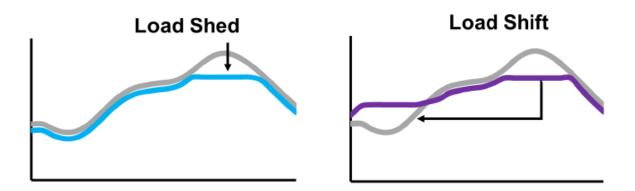
- Training and calibration of models (\$\$\$)
- Acceptance by building operators
- Computational limitations of BAS hardware

Shed/Shift HVAC: Execution

- Model-based control and enablers
 - Optimization horizon, re-evaluation interval, objective, algorithm
 - Model selection and calibration
 - Integration with fault detection, diagnosis, and prognosis
 - Adaptivity
 - Uncertainty management and robustness
 - Control interpretability
 - Advanced actuation
 - Integration with envelope and lighting control
 - Integration with electricity generation and storage control
 - Multi-building coordination

Shed/Shift HVAC: Characterization, etc.

- Characterization and M&V
 - Counterfactual baseline uses shadow optimization that does not incentivize shedding and shifting
 - Explicit management of uncertainty can help estimate risk of not delivering on committed services
- Quantitative analysis
 - BEMs generally sufficient, especially ones that can calculate operative temperatures and thermal comfort
 - Enhancements needed in control sequence modeling, integrated district system modeling, occupant preference modeling and assumptions, weather data and extreme events and output metrics


Shed/Shift HVAC: Recommendations

- Develop fundamental and practical aspects of MPC.
- Develop methods of acquiring occupant comfort status and preferences.

Shedding and Shifting Other End-Uses

Veronica Adetola, PNNL

Shed/Shift Other

"Other" end-uses

- Mechanical (AC/DC): water heating, refrigeration, appliances
- Electronics (DC): lighting (shed only), computing. batteries

Typical characteristics

- Independent of weather (& envelope)
- Minimal contribution to HVAC loads (some exceptions).
- Usage prediction is a challenge for some

Shed/Shift Other: 03

- Goal: shed/shift without occupant impacts
 - Lighting, appliances, some computing are occupant driven

POTENTIAL IMPACT ON OCCUPANTS

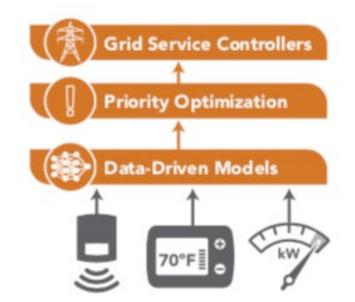
Flexible With "storage" Shift ahead Few impacts

- Water heaters
- Refrigeration
- Batteries

Flexible No storage

Shift ahead, back Few impacts

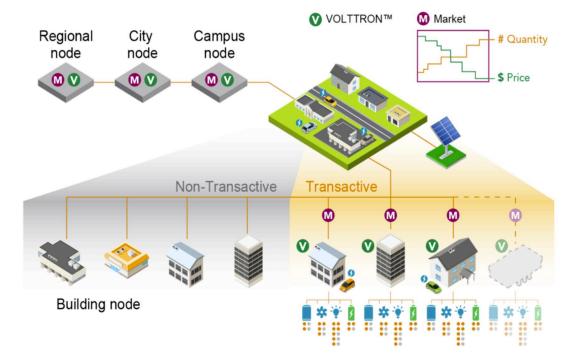
- Dishwashing
- Washing, drying
- Some computing


Inflexible No storage Shed only

Impacts

- Lighting
- Conveyance
- Entertainment

Shed/Shift Other: Execution

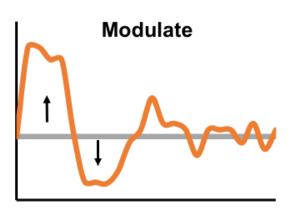

- Occupant-centric methods are needed to quantify, prioritize & value end-use
 - Preassigned, static priorities
 - Rule-based (day-time vs. evening)
 - Dynamic prioritization
- Implementation
 - Direct load control
 - Pre-programmed price-response
 - Proactive control based on historical use patterns & electricity price forecasts

Shed/Shift Other: Execution

- Coordination / resource-allocation across end uses
 - Price-based mechanisms establish priorities & service levels
 - Can incorporate HVAC & DERs
 - Scales to multiple buildings

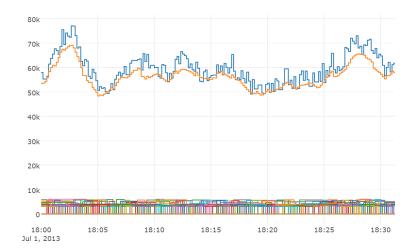
Shed/Shift Other: Characterization, etc.

- Characterization
 - By manufacturer for device-level direct load control
 - Schedule/sub-meter analysis or manually for price response
- M&V
 - Trusted (by customer & utility) sub-metering
 - Trusted equipment-level or environmental sensing
- Quantitative analysis
 - More realistic, stochastic, sequentially ordered schedules at greater temporal resolutions


Shed/Shift Other: Recommendations

- Develop methods of registering occupant prioritization and valuation of different end uses.
- Develop methods of prioritizing different zones and end uses within a building and coordinating energy efficiency and grid service delivery across those zones and end uses.

Modulation Services


Dane Christensen, NREL

Modulation

- Modulation services contribute to grid reliability & stability & delivered power quality by helping to regulate power characteristics (e.g., frequency)
 - Can be signaled, e.g., frequency regulation (4-second signal)
 - Can be autonomous, e.g, contingency reserves
 - Considered energy neutral, do not typically impact occupants
- Equipment
 - VFD motors (cycling may limit)
 - SSL & electronics
 - Batteries

Chart from: Frequency Regulation Services From Connected Residential Devices https://www.nrel.gov/docs/fy17osti/66586.pdf

Modulation

- 03
 - Little or no occupant impact
- Execution
 - Uni-directional communication
 - Local control
- M&V
 - May require higher-fidelity meters than typical in buildings
 - Metrics are developing
- Quantitative analysis & planning
 - Does energy neutrality imply BEM is not needed?

Modulation: Recommendations

- Determine the degree of interaction between shedding and shifting, energy-neutral modulation, and non-energy neutral modulation services, and the feasibility of providing more than one of these services from within the same control domain.
- Determine the role that BEM plays in the provision of modulation services.

Interoperability and Cybersecurity

Dane Christensen, NREL

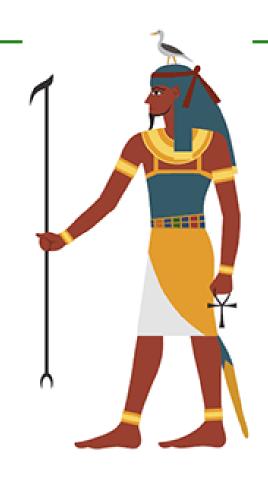
Interoperability

- GEBs rely heavily on communication within the building & between building and grid
 - Involve numerous previously separate industries
 - Protocols: BACnet, CTA-2045, OCPP, etc.
- Interoperability: the ability of devices or software systems to reliably exchange (interpret/act on) data
 - Reduces installation cost
 - Guards against vendor lock-in & fosters innovation
 - In GEB: maximizes service benefit
- A device or software does not have to support every protocol & data schema to be usefully interoperable

Cybersecurity

- Cybersecurity is the practice of preventing unauthorized access to and use of electronic data, system, or service
- GEB cybersecurity is important because GEBs will be increasingly interconnected with the grid
 - Vulnerabilities in building software and devices could be used to attack the larger grid
 - The grid could become an additional means of gaining access to building data and systems
- Even if the grid is not directly compromised, a grid that is more heavily reliant on building-based services to maintain stability is indirectly made more vulnerable by greater building-level automation and interconnectivity

Cybersecurity


- A cybersecure grid service is one in which the building and the service aggregator or utility know
 - What service is being provided and when,
 - That the M&V information is accurate, and
 - That devices that support service delivery and M&V are available when needed.
- GEB equipment should support cybersecurity now, and have facility for upgrade and/or component replacement to enable appropriate future cybersecurity

Interop/Cyber: Recommendations

- Support development and adoption of standard data models and formats and communication protocols for building and behind-the-meter equipment.
- Support the adoption of secure system architectures and cybersecurity best practices.

Thank you!

- Any questions? Contact us!
 - amir.roth@ee.doe.gov
 - janet.reyna@nrel.gov
 - draguna.vrabie@pnnl.gov
 - veronica.adetola@pnnl.gov
 - dane.christensen@nrel.gov
- Also
 - All things GEB: monica.neukomm@ee.doe.gov
 - Sensors & controls: <u>erika.gupta@ee.doe.gov</u>
 - Sensors & controls: <u>nikitha.radhakrishnan@ee.doe.gov</u>

Register for the other GEB Webinars!

Торіс	Date	Time
Lighting & Electronics	May 26	2:00pm - 3:00pm ET
<u>Heating, Ventilation & Air</u> <u>Conditioning (HVAC)</u>	June 2	2:00pm - 3:30pm ET
Water Heating & Appliances	June 9	2:00pm - 3:00pm ET
Envelope & Windows	June 16	2:00pm - 3:30pm ET
<u>Integration – Building</u> <u>Equipment</u>	June 23	2:00pm - 3:00pm ET
<u>Integration – Distributed</u> Energy Resources(DERs)	June 30	2:00pm - 3:00pm ET