FORCED AIR SYSTEMS IN HIGH PERFORMANCE HOMES

Iain Walker (LBNL) Building America Meeting 2013

What are the issues?

- 1. Sizing
 - When is too small too small?
- 2. Distribution
 - Can we get good mixing at low flow?
- 3. Performance
 - Humidity Control
 - Part load efficiency
 - Blowers & thermal losses

Sizing

- Part-load not an issue with modern equipment
- Careful about predicted loads a small error becomes a big problem for tightly sized systems
- □ Too Low Capacity = not robust
 - Extreme vs. design days
 - Change in occupancy
 - Party mode
 - Recovery from setback

Sizing

- Conventional wisdom a good envelope = easy to predict and not sensitive to indoor conditions
- But.... Heating and cooling become discretionary large variability depending on occupants
 - Absolute energy changes small relative changes large

Challenges to Precise Sizing in High Performance Homes

- Inconsistent relationships between heating system energy and temperature difference
- Homes are not simply thermostat controlled
- Heating has become more discretionary
- Internal and solar gains could also cause this, or "heat when home" strategies

Daily Temperature Difference (F)

P6S Daily Heating Energy Consumption Versus Indoor-Outdoor Temperature Difference

Distribution: Comfort Guidelines

- ASHRAE 55 sets ranges for Temperature and humidity
 - Building America field data shows that houses spend a lot of time outside Std. 55 limits
 - Are occupants more adaptable (home vs. office)?
- ACCA 4-6F recommended maximum differences between rooms

Can we be more flexible in High Performance Homes?

- What is acceptable indoor humidity in High Performance Homes?
 - High and more uniform surface temperatures = less condensation = higher indoor RH OK
 - Probably limited by condensation on registers?
- Field measurements indicate same humidity throughout house BUT lower RH (<5% diff.) on second floor due to average higher temperatures

Distribution

- Solar loads heating one half of house relative to other – needs zoning or smart air movement or good solar control
- Longer transit times = bigger conduction losses
 - Ducts MUST be inside & insulated
 - Keep duct runs short centrally locate HVAC

Distribution – Integration with Ventilation

- Continuous HRV/ERV either stand alone or using same ducts
- Similar magnitude air flows as heat/cool BUT maintenance issues
- Need a good envelope

Temperatures Between Floors in OK home

- Temperatures in a wide band
- Would not meet ACCA requirements 25% of the time
- Typical Forced air heat/cool system
- 1200 cfm in 2400
 sq.ft. home +
 continuous ERV
- □ 5.7 ACH50 envelope

Temperature Difference (F)

Temperatures Between Floors in High Performance Home with ERV

- Temperatures in a narrow band
- Electric Baseboard heat
- Would meet ACCA requirements
- 150 cfm continuous in
 1600 sq.ft. home
- □ 270 cfm50 envelope

P1 Histogram of Temperature Differences

Temperature Difference (F)

Performance – a good blower

Performance - Humidity

- Same Latent Load + Low Capacity = Potential Humidity Issues
 - Need stand-alone humidity control
 - Dehumidifier or ventilation depends on climate
- High Performance Homes have higher average humidity but less extreme humidity – a more controlled environment
- ASHRAE 62.2 compliant kitchen and bath venting = less latent load
- High humidity when AC off not a part-load or capacity issue

Relative Humidity in High Performance Home

- Narrow Band near60%
- Almost nothing over
 65%
- Similar results in simulation studies for ARTI & ASHRAE
- Humidistat activated
 ERV (Io to hi flow)

Humidity a shoulder season issue

Recommendations

- □ Some extra capacity is OK
- Ducts must be inside and insulated
- Use BPM/DC blowers for low fan power
- Use independent humidity control: dehumidifiers and ventilation + kitchen and bath exhausts
- Integrate with continuous ventilation as distribution option
- Think about solar load control/zoning for asymmetric solar loads

Setpoint? – What Setpoint?

- Occupant thermal preference?
- Occupant desire to reduce energy usage?
- Enhanced radiant environments?
- Discretionary heating?

Comparison of Hourly Average Winter Temperatures in DER Homes

Hour of the Day