

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Effect of Occupant Behavior and Air Conditioner Controls on Humidity in Typical and Low-Load Homes

Panelists

Jon Winkler and Jason Woods, National Renewable Energy Laboratory Jeff Munk, Oak Ridge National Laboratory

Moderator Linh Truong – National Renewable Energy Laboratory

December 6, 2017

Housekeeping

Housekeeping

Two Options for Audio (select audio mode):

1. Listen through your computer.

- Please select the "mic and speakers" radio button on the right hand audio pane display

2. Listen by telephone.

- Please select the "telephone" option in the right-hand display, and a phone number and PIN will display.

3. Panelists - Please mute your audio device when not presenting

4. Technical Difficulties: Contact the GoToWebinars Help Desk: 888.259.3826

Asking Questions

Select the 'questions' pane on your screen and type in your question.

If you are having difficulty viewing the materials through the webinar portal:

You may find PDF copies of the presentation at the website listed here and you may follow along as our speaker presents. Today's webinar is being recorded and the recording will be available on the DOE YouTube channel within a few weeks.

http://energy.gov/eere/buildings/building-america-meetings#current

Agenda

✓ Welcome and Introductory Remarks

✓ Overview of Building America (buildingamerica.gov)

Linh Truong – National Renewable Energy Laboratory

✓ Speakers

- > Jon Winkler and Jason Woods, National Renewable Energy Laboratory
- Jeff Munk , Oak Ridge National Laboratory

✓ Questions and Answers

✓ Closing Remarks

Effect of occupant behavior and air conditioner controls on humidity in typical and highefficiency homes

Jon Winkler Jason Woods

Jeffrey Munk

Dec. 6, 2017

The Relative Importance of Loads Is Changing

Building efficiency

Percentage of Total Load that Is Latent Is Increasing

Latent and Sensible Loads for Homes

Internal Moisture Gains Are Highly Variable and Unknown

Glass, S. and A. TenWolde. 2009. Review of Moisture Balance Models for Residential Indoor Humidity.

Objectives

- 1. Characterizing the sensible and latent cooling loads of typicalconstruction homes and low-load homes
- 2. Evaluating the sensitivity of indoor humidity to variations in internal loads, window shading, and air conditioner cooling set point
- 3. Determining how air conditioner operation affects indoor humidity to guide equipment selection and setup for equipment installers and service technicians
- <u>Approach</u>: Utilize EnergyPlus simulation engine with stochastic occupant-related inputs to assess sensitivity on indoor humidity and cooling energy

Outline

Modeling approach and assumptions

- $_{\odot}\,$ House model inputs and assumptions
- Moisture buffering model
- $_{\odot}$ Air conditioner model
- $_{\odot}\,$ Stochastic approach to occupant behavior
- Brief Q&A

Results and discussion

- $_{\odot}\,$ Sensible and latent cooling loads
- $_{\odot}$ Humidity sensitivity results
- $_{\odot}\,$ Cooling system design and controls impact on humidity
- Conclusions
- Additional Q&A

Modeling Approach and Assumptions

Envelope

- Window SHGC •
- Wall/roof R-value •

Infiltration/ventilation • •

Level of furnishings • •

Air conditioner

- Blower off delay •
- Sizing •
- Indoor air flow rate •

Occupants

- Internal gains •
- Window shading •
- Cooling set point •

Envelope

- Window SHGC •
- Wall/roof R-value •

Infiltration/ventilation • •

Level of furnishings • •

Air conditioner

- Blower off delay •
- Sizing •
- Indoor air flow rate •

Occupants

- Internal gains •
- Window shading •
- Cooling set point •

House Geometry and Climates

New construction; single family; 2,500 ft²; 3 bed + 2 bath

- Construction inputs and foundation type varied based on climate
 - Houses in climate zones 1-3 were assumed to be slab-on-grade
- IECC 2009 home: standard efficiency based IECC 2009 requirements
 - Duct location was based on the Building America House Simulation Protocols (HSP)
 - $_{\odot}$ $\,$ Homes did not have whole-house mechanical ventilation $\,$
- Low-load home: high efficiency home based on DOE Zero Energy Ready requirements
 - $_{\odot}$ $\,$ Ducts were assumed to be located in conditioned space $\,$
 - Whole-house exhaust fan running continuously per ASHRAE
 62.2-2013

Key House Construction Characteristics

	City	Climate	Wall R-Value	Ceiling R-Value	ACH ₅₀	Window U-Value	Window SHGC	Duct Location	Ventilation
Home	Miami, FL	1	R-13	R-30	4.75	0.37	0.30	Attic	Spot vents per GIHM profiles
	Orlando, FL	2							
	Phoenix, AZ								
	Atlanta, GA	3			4.6				
6	Las Vegas, NV								
IECC 200	Nashville, TN	4		- R-38	4	0.35	0.44	Crawlspace	
	Albuquerque, NM							Attic	
	Indianapolis, IN	5	R-13+5					Basement	
	Denver, CO								
	Minneapolis, MN	6		R-49					

City	Climate	Wall R-Value	Ceiling R-Value	ACH ₅₀	Window U-Value	Window SHGC	Duct Location	Ventilation
Miami, FL	1		R-30	3	0.37	0.25	Conditioned Space	ASHRAE 62.2 + Spot vents per GIHM profiles
Orlando, FL	- 2	R-13	R-38					
Phoenix, AZ								
Atlanta, GA	- 3			2.5	0.30	0.25		
Las Vegas, NV								
Nashville, TN	- 4				0.30	0.40		
Albuquerque, NM		K-13+5	R-49					
Indianapolis, IN	- 5			2	0.27	0.46		
Denver, CO								
Minneapolis, MN	6	R-13+10						

Envelope

- Window SHGC •
- Wall/roof R-value •

Infiltration/ventilation • •

Level of furnishings • •

Air conditioner

- Blower off delay •
- Sizing •
- Indoor air flow rate •

Occupants

- Internal gains •
- Window shading •
- Cooling set point •

Moisture Buffering Field Tests

What Parts of a Home Adsorb Moisture?

Effective Moisture Penetration Depth Model

 Our building simulations use a two-layer effective moisture penetration depth model to account for moisture buffering in building materials.

Multiple Field Datasets Used to Validate Model

Ft. Wayne, IN

Stockton, CA

Cocoa, FL

Comparison of Model to Measured Data

Moisture Buffering Levels

• Three buffering levels were modeled to investigate sensitivity

Buffering model input	Low	Baseline	High
Drywall to finished floor area multiplier (m ² /m ²)	2.04	2.92	3.80
Floor carpet fraction	0.3	0.6	0.9
Furniture to finished floor area multiplier (m ² /m ²)	0.25	0.75	2.25
Wood to finished floor area multiplier (m ² /m ²)	0.31	0.31	0.31

Envelope

- Window SHGC •
- Wall/roof R-value •

Infiltration/ventilation • •

Level of furnishings • •

Air conditioner

- Blower off delay •
- Sizing •
- Indoor air flow rate •

Occupants

- Internal gains •
- Window shading •
- Cooling set point •

Space Conditioning Equipment Type

• Type and efficiency of equipment for each house selected based on climate zone and efficiency level of home

Climate Zone	City	IECC 2009 Home	Low-Load Home
1	Miami, FL	14 SEER/8.2 HSFP	18 SEER/9.3 HSPF
2A	Orlando, FL	14 SEER/8.2 HSFP	18 SEER/9.3 HSPF
2B	Phoenix, AZ	14 SEER/80% AFUE	18 SEER/80% AFUE
3A	Atlanta, GA	14 SEER/8.2 HSFP	18 SEER/9.3 HSPF
3B	Las Vegas, NV	14 SEER/80% AFUE	15 SEER/92.5% AFUE
4A	Nashville, TN	14 SEER/8.2 HSFP	18 SEER/9.3 HSPF
4B	Albuquerque, NM	13 SEER/80% AFUE	15 SEER/92.5% AFUE
5A	Indianapolis, IN	13 SEER/80% AFUE	15 SEER/95% AFUE
5B	Denver, CO	13 SEER/80% AFUE	15 SEER/95% AFUE
6	Minneapolis, MN	13 SEER/80% AFUE	15 SEER/95% AFUE

Space Conditioning Equipment

- Evaluate the impact of 3 design/setup parameters
 - Equipment sizing
 - \circ Blower airflow rate
 - \circ Blower-off delay

Air Conditioner Sizing

- Based on ACCA Manual J
- 2x

• Effects of oversized equipment

- $_{\odot}$ Increased cycling
 - Reduced efficiency
 - Increased latent degradation associated with blower-off delay
- \circ Reduced runtime
 - Decreased duct conduction losses

Air Conditioner Blower Air Flow Rate

- High = 450 cfm/ton
- Baseline = 400 cfm/ton
- Low = 350 cfm/ton

EVAPO	EVAPORATOR AIR		75 (23.9)			85 (29.4)		
CFM	EWB °F (°C)	Capacity MBtuh		Total	Capacity MBtuh			
		Total	Sens‡	System KW**	Total	Sens‡		
	72 (22.2)	40.58	21.42	2.31	38.93	20.83		
	67 (19.4)	37.70	26.94	2.31	36.20	26.34		
1050	63 (17.2)††	35.48	26.09	2.32 🤇	34.08	25.48		
	62 (16.7)	34.87	32.22	2.32	33.53	31.59		
	57 (13.9)	34.27	34.27	2.33	33.16	33.16		
	72 (22.2)	40.97	22.55	2.37	39.26	21.96		
	67 (19.4)	38.15	28.79	2.37	36.60	28.19		
1200	63 (17.2)††	35.99	27.83	2.38 🤇	34.54	27.22		
	62 (16.7)	35.60	35.60	2.38	34.41	34.41		
	57 (13.9)	35.56	35.56	2.38	34.36	34.36		
	72 (22.2)	41.20	23.64	2.43	39.44	23.04		
	67 (19.4)	38.46	30.60	2.43	36.86	29.99		
1350	63 (17.2)††	36.36	29.53	2.43 🤇	34.86	28.90		
	62 (16.7)	36.61	36.61	2.43	35.33	35.33		
	57 (13.9)	36.57	36.57	2.43	35.29	35.29		

Manufacturer's Performance Data

Increase in cfm/ton results in:
Decrease in latent capacity
Increase in sensible capacity
Increase in sensible heat ratio (SHR)

Air Conditioner Blower-Off Delay

- High = 90 s
- Med = 45 s
- Low = 0 s
- Continuous Fan

During the blower-off delay:

- Evaporative cooling due condensate evaporation
- Sensible cooling
- Negative latent cooling

Shirey, D. B., III, Henderson, H. I., III, and Raustad, R. A. 2006. Understanding the Dehumidification Performance of Air-Conditioning Equipment at Part-Load Conditions. FSEC-CR-1537-05.

Air Conditioner Blower-Off Delay

- EnergyPlus does not natively support blower-off delay latent degradation calculations
- Used EMS program
- Adds moisture and sensible cooling due to evaporation during blower-off delay and offcycle
 - Fan "off" airflow rate assumed to be
 0.1% of fan "on" airflow to account
 for natural convection

Envelope

- Window SHGC •
- Wall/roof R-value •

Infiltration/ventilation • •

Level of furnishings • •

Air conditioner

- Blower off delay •
- Sizing •
- Indoor air flow rate •

Occupants

- Internal gains •
- Window shading •
- Cooling set point •

Occupancy and Internal Gains

- The number of occupants and occupant behavior can have a large effect on the sensible and latent internal gains
- National average internal gain profiles do not provide any insight into how indoor humidity varies due to different occupancy
- Generation of Indoor Heat and Moisture (GIHM) tool developed at ORNL
 - Developed to evaluate envelope moisture durability risks
 - Similar to Building America Domestic Hot Water Generator for internal loads

GIHM Tool

Example data flow for determining hourly sensible and latent gains for occupants

GIHM Tool, cont.

Data sources

- Residential Energy Consumption Survey
- $_{\odot}\,$ Bureau of Labor and Statistics
- $_{\odot}\,$ American Time Use Survey
- Census data
- House Simulation Protocol
- ASHRAE Fundamentals Handbook
- \circ In-house experiments
- \circ Others
- Engineering judgement

Internal Gain Profiles

 Used GIHM tool to generate 200 internal gain profiles for a ~2500 sq. ft. house with 3 bedrooms and 2 bathrooms

Number of Occupants (% of Profiles)	Avg. Latent Load (Ib/day)	IECC 2009 Home Avg. Sensible Load (kWh/day)	Low-Load Home Avg. Sensible Load (kWh/day)
1 (5.8%)	7.5	12.3	10.4
2 (26.0%)	12.0	14.6	12.6
3 (21.4%)	15.9	16.3	14.3
4 (24.3%)	19.5	18.0	16.1
5 (12.1%)	22.8	19.5	17.7
6 (10.4%)	25.9	21.2	19.2

- Low-load home included more efficient lighting and appliances
- Building America House Simulation Protocol loads for 3 occupants
 - Sensible = 18.0 kWh/day
 - Latent = 12.2 lb/day

Box and Whisker Plot Introduction

Box-and-whisker plot is a method of displaying a distribution of data

- Key quantities:
 - \circ Median
 - \circ Lower quartile
 - \circ Upper quartile
 - Interquartile range (IQR)
 - Lower whisker value
 - Upper whisker value
 - \circ Outliers

Occupant Internal Gains

Window Shading

- Used solar heat gain coefficient (SHGC) multiplier
- Multiplier determined for each house
 - $_{\odot}~$ No seasonal or daily variations

Cooling Set Point

- Three air conditioner cooling set points were investigated
 - 22.2°C (72°F)
 - According to EIA RECS data, 46% of homes maintain a cooling set point at or below 22.2°C (72°F)
 - 23.9°C (75°F)
 - Baseline value based on ACCA Manual J
 - 25.6°C (78°F)
 - According to EIA RECS data, 22% of homes maintain a cooling set point at or above 25.6°C (78°F)
- Constant heating set point of 21.1°C (70°F) was assumed

Simulation Study Overview

2 Efficiency Levels (IECC 2009 & Low-Load)

6 Climate Regions (10 cities)

200 Stochastic Internal Gain Profiles

Simulation Cases

- Moisture buffering
- Thermostat set point
- Blower air flow rate
- Blower-off delay
- Air conditioner sizing

EnergyPlus Simulations

Simulation Outputs

- Sensible and latent cooling loads
- Indoor humidity
- Cooling energy use

Simulation Cases

- Parameters were individually varied to assess sensitivity on indoor humidity and cooling energy use
 - Baseline values were used for other building characteristics
- Stochastic internal gain profiles and interior window shading were used for all cases

Building Characteristic	Low	Baseline	High	
Internal gains	200 stochastic simulations			
Interior window shading	200 stochastic simulations			
Moisture buffering	Low	Medium	High	
Cooling set point (°C)	22.2	23.9	25.6	
Equipment sizing	Manual J		2x	
Blower air flow rate (cfm/ton)	350	400	450	
Blower-off delay (s)	0	45	90	

BEopt/EnergyPlus Simulation Workflow

0001 - EnergyPlus Process Single Input File Group of Input Files History Utilities -Input File C1JonW1\$temp_sim\vrf\1.id Browse ... Edit-TextEditor Edit-IDFEdit Weather File C1JonW\\$temp_sim\ashp\USA_GA_Atlanta-Hartsfield-Jackson Int AP 722190_TMY3 Browse View Results ion ent Parameters Tobles Errors DEIN ELOMP BND DE OUT DEDMP DBG Bunt SVB ZSZ EPMIDE VRML MTR Slab /01 for ATLANTA HARTSFIELD INTL AP GA 2464 SQFI ations. Start Date=01/21 01/21 for ATLANTA HARTSFIELD INTL AP GA 2464 SQF EnergyPlus 8.4.0 Exit

1. Develop BEopt model; export BEopt XML files 2. Execute python scripts to generate EnergyPlus input files using internal gain profile schedule files 3. Run group of EnergyPlus simulation in parallel on workstation

Brief Q&A on Modeling Approach and Assumptions

Results – Building Cooling Loads

Sensible and Latent Cooling Loads

- Sensible and latent cooling loads were calculated using air conditioner and whole-house dehumidifier capacity
 - Cooling set point = 23.9°C (75°F)
 - \circ Relative humidity set point = 55% RH
- Hourly load calculations

$$\dot{Q}_{bldg,sens} = \dot{Q}_{AC,sens} - \dot{Q}_{dehum,heat,added} - \dot{P}_{blower}$$

$$\dot{Q}_{bldg,lat} = \dot{Q}_{AC,lat} + \dot{Q}_{dehum,lat}$$

- Monthly output calculations
 - Average daily peak load
 - Hourly average sensible heat ratio

Sensible Cooling Loads (Humid Cities)

- Variation in box and whisker plot is due to variation in internal gain profiles and interior window shading
- Efficiency measures result in a median sensible load reduction of 16% to 25% for homes in climate zones 1-4
 - Design total cooling load reduction ranged from ~10% - 50%

Sensible and Latent Cooling Loads (Humid Cities)

- Low-load home sees a latent load increase due to mechanical ventilation
 - Set of internal latent load profiles are identical for the IECC 2009 and lowload homes

Total Cooling Loads (Humid Cities)

- For the two houses simulated, total load is similar
- Load SHR (during hours with a notable cooling load) decreased in the low-load home by 0.1-0.2
 - Load SHRs present in the IECC 2009 home align with typical air conditioner SHRs

Sensible and Latent Cooling Loads (Dry & Cold Cities)

- In dry and cold cities, latent load remains a small fraction of the total load
- Total cooling load did decrease in these cities

Results – Humidity Sensitivity Analysis

Humidity Metric

• What measurement of humidity to use?

- % RH, dew point (DP), wet bulb temperature (WB)
- ASHRAE 55 Graphical Method upper humidity limit timeline

- 57.0°F DP Humidity Control Design Guide for Commercial and Institutional Buildings
- 55.0°F DP ASHRAE Guide for Buildings in Hot & Humid Climates
- This study used hours above 15.7°C (60.2°F DP)
 - 60% RH @ 23.9°C (75.0°F)

Baseline Case – Indoor Humidity

- Median hours above 15.7°C (60.2°F) increased in all humid cities in climate zones 1-5
- Large spread in the box plot indicates occupant behavior can have a larger impact on indoor humidity than building characteristics

Baseline Case – Cooling Energy

- Median cooling energy savings of 31%-41% in climate zones 1-4
 - 50%-75% of cooling energy savings due to sensible load reduction
 - Remainder is due to higher efficiency cooling equipment
- Variation in occupant behavior can have a larger impact on cooling energy than efficiency improvements

Moisture Buffering

- Increased buffering reduced median hours above 15.7°C (60.2°F) DP
- Buffering level did not impact air conditioner energy use

Impact of Moisture Buffering

- Mean humidity is 2°C <u>below</u> dew point comfort limit
 - Higher buffering reduces hours above the dew point limit

- Mean humidity is 2°C <u>above</u> dew point comfort limit
 - Higher buffering increases hours above the dew point limit

Thermostat Cooling Set Point – Indoor Humidity

- Decreasing the cooling set point 1.3°C (3.0°F) reduces the median hours above 15.7°C (60.2°F) DP
 - IECC 2009 home: 90%-100%
 reduction
 - Low-load home: 79%-96%
 reduction

Thermostat Cooling Set Point – Cooling Energy

- Percent increase in cooling energy was similar for both house types
- Median cooling energy increased 27%-44% when lowering the thermostat 1.3°C (3.0°F)

Thermostat Cooling Set Point – Indoor Relative Humidity

- Similar trend compared to using DP-based metric
- Decrease in hours above 60% RH is less significant due to RH dependence on dry-bulb temperature
- Trend reverses in CZ 4 & 5
 low-load homes

Results – Cooling System Design and Controls

Blower Airflow Rate – Indoor Humidity

 Small to moderate impact on indoor humidity

Blower Airflow Rate – Cooling Energy

- < 1.5% change in cooling energy use
- As airflow increases, compressor power decreases, and blower power increases

Blower-Off Delay – Indoor Humidity

 Blower-off delay had a larger impact on indoor humidity than blower airflow rate

Blower-Off delay – Cooling Energy

- Cooling energy use variation between +1% and -2% for all cities
- Models did not account for thermal mass of ductwork or air handler

Continuous Fan – Indoor Humidity

Don't run continuous fan!

Oversizing – Indoor Humidity

- 2x oversize affects indoor humidity similar to running at 450 cfm/ton
- Reduced airflow rates and no blower-off delay can mitigate comfort effects of oversizing

Oversizing – Cooling Energy

 Cooling energy is only slightly affected

Conclusions

- Cooling load SHRs below 0.6 for much of the year for lowload homes in humid climates
 - $_{\odot}$ Typical air conditioner SHR of 0.7 0.8
 - $_{\odot}$ Supplemental dehumidification needed
 - Research into separate sensible and latent cooling technologies may be advantageous

Conclusions

- Internal loads can have a significant impact on indoor humidity
- Lowering the cooling set point by 3.0°F (1.7 °C) nearly eliminated high humidity conditions in all homes
 - Increases cooling energy use significantly
 - Potential for uncomfortably cool temperatures in order to reduce humidity
 - Increases risk of condensation on building surfaces and in wall structures

Conclusions

- Reducing cooling supply airflow rate and eliminating the cooling blower-off delay were both shown to reduce indoor humidity
 - Small impact on cooling energy use (<2% individually)
 - Typically easy to adjust (changing speed taps, dip switches, jumpers)
 - Can mitigate humidity effects of an oversized system

Future Work

- Need a metric for assessing comfort based on temperature and humidity that reflects residential occupant expectations
 - ASHRAE 55 analytical method does not seem sensitive enough to indoor humidity (large fluctuations have little effect on percent dissatisfied)
- Need a method for distilling hourly measurements into simple value representing annual comfort

Questions

Supplemental Material

Number of GIHM Profiles

Selected 200 of the 1,000 profiles to run in the study simulations

Atlanta, Low-Load Home w/ BA HSP Internal Gains	Hours above 60% RH
70 Htg SP, 75 Clg SP, A62.2 2013, 400 cfm/ton	1316
72 Htg SP, 78 Clg SP, A62.2 2010, 375 cfm/ton	926
Removed neighbors	725
BA Benchmark lighting	572
RP-1449 window inputs	401
Added ceiling fans	375
RP-1449 ACH50 & attic insulation	409
RP-1449 slab insulation & BA Benchmark carpet	183
No window shading	91

ASHRAE 55-2013 Analytical Comfort Zone Method

Moisture Buffering

- Decreasing the DP threshold reverses the trend in Miami and Orlando
- If mean indoor humidity is below threshold, additional buffering improves comfort
- If mean indoor humidity is above threshold, additional buffering worsens comfort

Question?

Select the 'questions' pane on your screen and type in your question.

Visit the Meetings page at:

http://energy.gov/eere/buildings/building-americameetings#current

Subscribe to notices about webinars and other news at:

http://energy.gov/eere/buildings/subscribe-building-america-

<u>updates</u>

Thank You!

PDF copy of the presentation available:

http://energy.gov/eere/buildings/building-americameetings#current

Visit: <u>www.buildingamerica.gov</u>

