

Air Distribution Retrofit Strategies for Affordable Housing

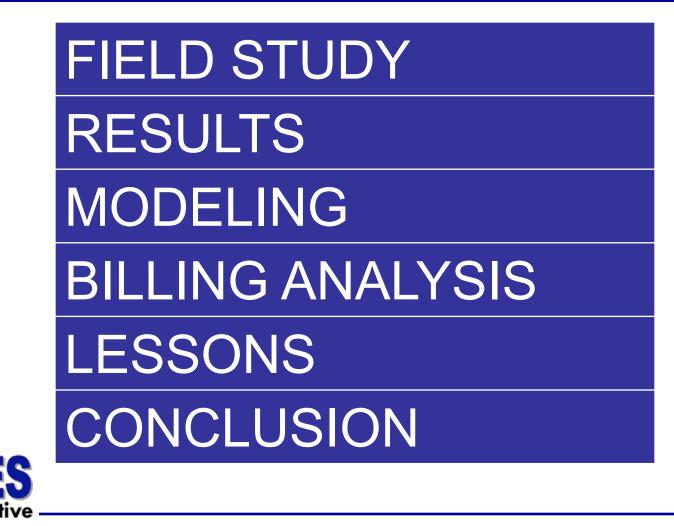
Jordan Dentz, The Levy Partnership, Inc.

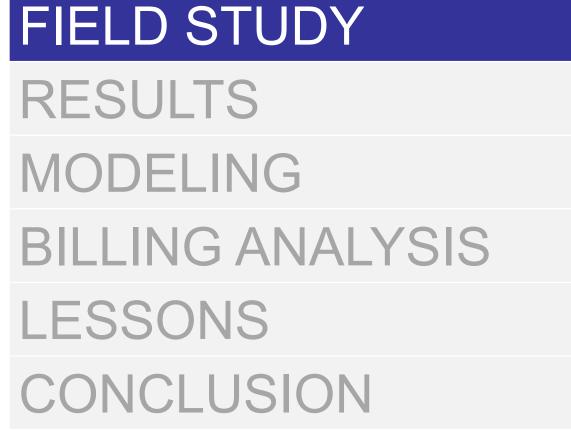
THE LEVY PARTNERSHIP

Francis Conlin, High Performance Building Solutions

Overview

- Duct sealing can be difficult, costly and disruptive
- Two techniques compared in 40 homes
 - Manually-applied sealants
 - Injected aerosol sealant (Aeroseal[®])


Research Questions


- What is the cost and effectiveness of Aeroseal[®] compared to manual duct sealing?
- What logistical and technical issues might affect community-scale duct sealing retrofit productivity and effectiveness?

OUTLINE

Building Characteristics

- Two North Carolina public housing complexes
 - 50 years old
 - ~1,000 ft²
 - Central air conditioning
 - Natural gas forced air heating

Unit Characteristics

Development	Unit type	Hand sealing	Aeroseal®	
Terrace Park	1 story 2 bedroom	0	2	
	1 story 3 bedroom	3	2	
	2 story 3 bedroom	7	6	
Berkshire	1 story 3 bedroom	7	7	
Village	2 story 3 bedroom	3	3	
Total		20	20	

Variety of Duct Configurations

	Terra	ace Park	Berkshire Village		
Unit type	1-story	2-story	1-story	2-story	
Supply duct	Flex	Unknown (inaccessible)	Metal trunk, flex branches	Floor 2: Metal trunk, flex branches; Floor 1: Unknown	
Supply location	Attic	Floor	Attic	Floor and attic	
Return duct	Metal				
Return, A/H location	Conditioned space				
Returns	1	2 (1/floor)	1	2 (1/floor)	

• *Register boots* to the ceiling/floor with mastic or foil tape from below/above

• *Return plenums* from the inside with mastic

• Air handler with mastic

Collaborative

• *Rigid trunk duct* and *trunk to flex duct connections* in the attic with mastic – where accessible

Aeroseal®

 Invented at Lawrence Berkeley National Laboratory in 1994

Certified Duct Diagnostics & Sealing

- Internally seals duct leaks by injecting aerosolized sealant particles into a pressurized duct system
- Polymer particles stick first to the edges of a leak, then to each other until the leak is closed

Aeroseal®

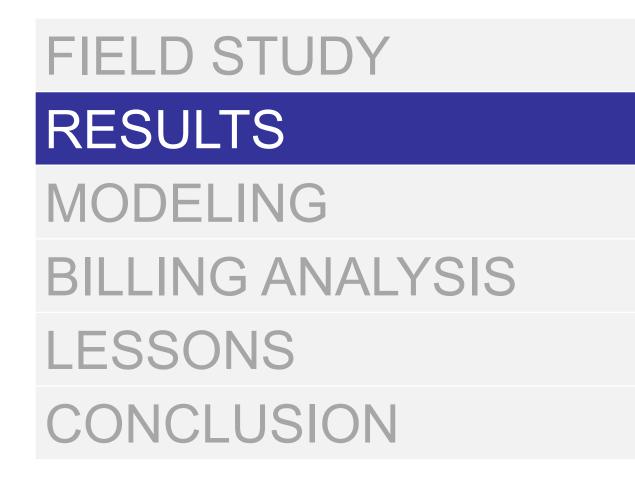
- Isolate registers and air handler from ducts
- Connect Aeroseal[®] system to supply duct

Aeroseal[®]

• Injector system connected to heating element attached to 8-10 foot plastic tunnel

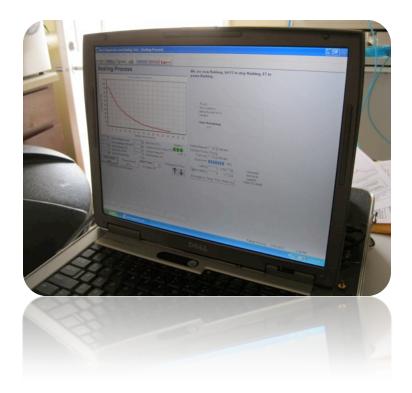
Aeroseal®

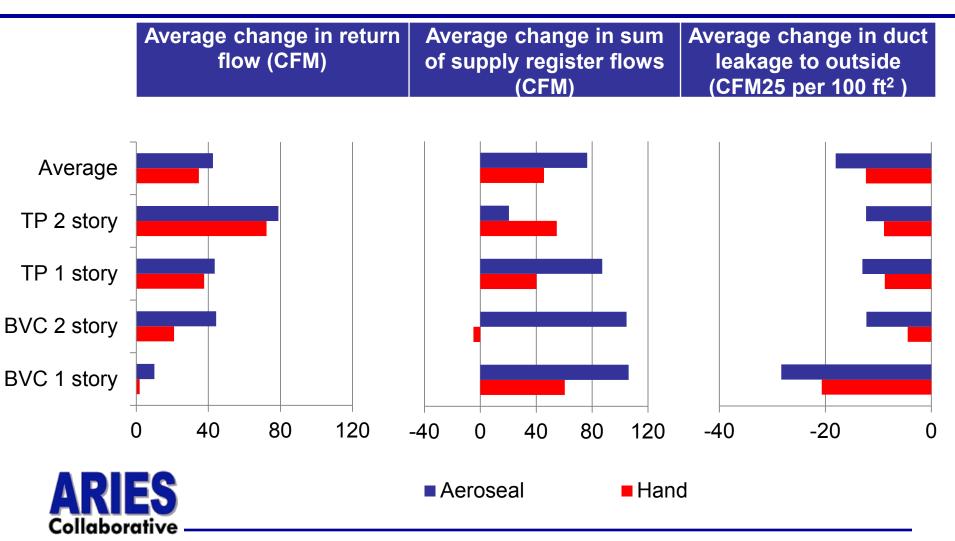
• Airflow and leakage continuously monitored throughout sealing process



Aeroseal[®]

 Hand-seal return plenum, air handler, junction between registers and wall/ceiling/floor



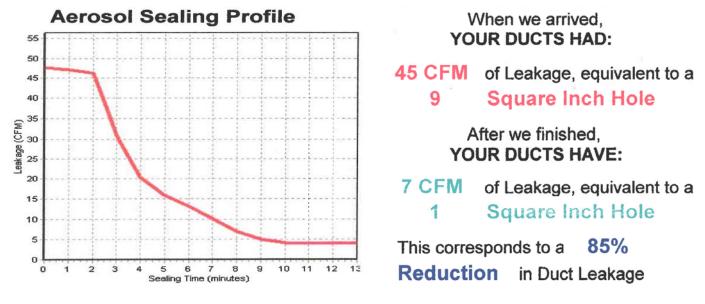

Results

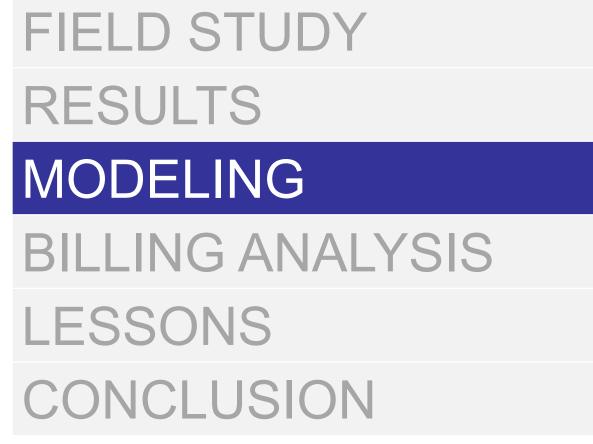
- Aeroseal[®]-treated units improved more than in the units sealed solely by hand
- Return flow and supply register flows increased on average in most retrofit units

Test Results

Test Results

Method	Number floors	Average pre- retrofit leakage to outside (cfm/100 ft ²)	Average post- retrofit leakage to outside (cfm/100 ft ²)	Leakage to outside reduction (%)
Hand	1 story	16.0	5.1	68%
sealing	2 story	15.6	8.0	49%
Aeroseal®	1 story	17.5	1.6	91%
	2 story	13.6	1.3	91%


Air Flow


- Return flow increased by average 40 CFM, slightly over 7%
- Flow increased more for the Aeroseal[®] units than the hand sealed units
- Supply register flows increased in most homes

Aeroseal[®]

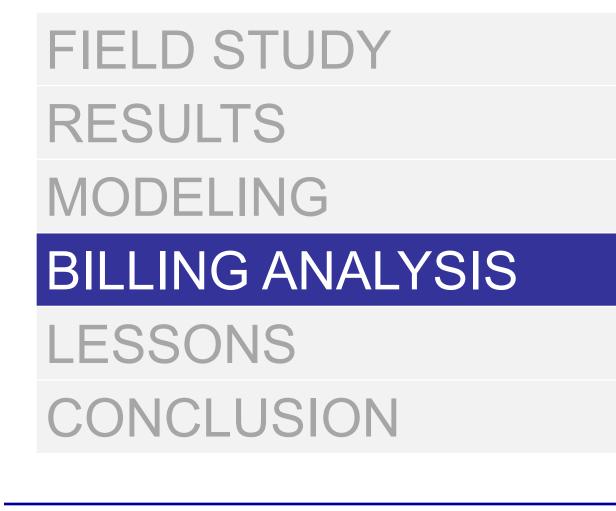
- Aeroseal[®] system records total duct leakage during sealing
- Approximately <u>70%</u> of the total leakage reduction was due to hand sealing at the air handler, return and registers.

Annual whole house MBtu savings

• Four units modeled with BEopt to predict postretrofit whole-house energy savings

Annual whole-house MBTU savings

Method	Number floors	Terrace Park	Berkshire
Hand sealing	1 story	3.9%	4.8%
	2 story	4.2%	3.2%
Aeroseal	1 story	4.8%	7.0%
	2 story	5.9%	6.9%


Costs

Method	Floors	Cost per unit
Hand sealing	1	\$511
	2	\$275
	1	ФТ ОО
Aeroseal	2	\$700

Cost Effectiveness – Annualized Energy Expense

Method	Plan	Pre-retrofit annualized energy expense	Post-retrofit annualized energy expense	Annual savings	% Change
	TP1	\$1,550	\$1,514	\$36	2.3%
Hand sealing	TP2	\$1,667	\$1,615	\$52	3.1%
	BV1	\$1,567	\$1,517	\$50	3.2%
	BV2	\$1,673	\$1,594	\$79	4.7%
	TP1	\$1,565	\$1,520	\$45	2.9%
Aeroseal®	TP2	\$1,670	\$1,605	\$65	3.9%
	BV1	\$1,568	\$1,495	\$73	4.7%
	BV2	\$1,717	\$1,679	\$38	2.2%

Utility Bill Analysis

- One year pre-post utility bills
- Average savings:

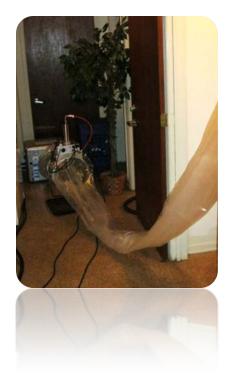
Method	Heating energy	Cooling energy
Hand	16.2%	16.3%
Aeroseal	13.7%	15.5%

Progres	s Energy	Customer Bill	page 1 of 1
		Account number	
0047355 01 SP	0.450 051	Total due	\$8.60
		Current charges past due a	fter Jun 22
		Thank you for your payment	May 1 \$9.05
CARY NC		Usage period	Apr 24 - May 24
		This bill was mailed on	May 29, 2012
	kWh Usage History	Usage	
1,800	-	Meter number	RD088
1,350		Readings: May 24	331
900		Apr 24	- 293
		kWh usage	38
450		Days in period 30 Average k	Wh per day 13
	Jul Sep Nov Jan Mar May	Total Peak Registration	
		On-peak KW May 23 at 6:59	pm 3.79
		Off-peak KW	4.63
ling idential- e of Use	HOUSE - SUNSENSE PV CUST - 30 Days		
nand rate	Basic customer charge		9.85
	On-peak KW	3.79 kw x \$3.730	00 14.1367
Second and	SunSense Solar PV Credit		-16.70
1. 2. 2. 2. 2. 2	REPS Adjustment		0.56,
	3% North Carolina sales tax		0.74

Average Annual Utility Bill Savings

Method	Energy Savings (therms)	Energy Savings (kWh)	Utility Bill Savings/Unit	Simple Payback (years)	Sample Size
Hand sealing	30	809	\$179	2.2	7, 1-story 4, 2-story
Aeroseal®	19	731	\$150	4.7	5, 1-story 2, 2-story

Aeroseal[®] Benefits


- Allows sealing inaccessible ducts
- Avoids some hassles of manual sealing:
 - Removing duct insulation, cleaning ducts, applying mastic, waiting for mastic to dry, reapplying insulation
- Avoids some quality control issues of hand sealing

Aeroseal[®] Challenges

- Small units required slow air flow
- High ambient relative humidity required low air flow
- Nozzle clogged due to low air flow and sequential jobs
- Arranging equipment challenging in small homes
- Lack of clearance between air handler and ceiling to connect to supply plenum



Production Scale Retrofits

- Most time spent on Aeroseal[®] is setup and cleanup
- Equipment idle, being moved or set-up 70% of the time
- Connect two duct systems simultaneously using a "Y" connector
- Smaller system suitable for lower flow would make work in small units simpler and quicker

Conclusion

- Both methods reduced duct leakage
- Reduction greater for Aeroseal[®], especially for inaccessible ducts
- Manual sealing required for Aeroseal[®] units (70% of leakage reduction due to hand sealing)
- Annualized energy expenditure reduction same for both methods

Conclusions

- Simple payback 4.7 years for Aeroseal and 2.2 years for hand sealing
- Utility bill analysis showed ~15% space conditioning energy savings for both methods
- Opportunity to streamline Aeroseal[®] technology for production scale work and smaller homes

Report

Report and case study on the Building America website

Jordan Dentz, The Levy Partnership, Inc. (212) 496-0800 x130 jdentz@levypartnership.com