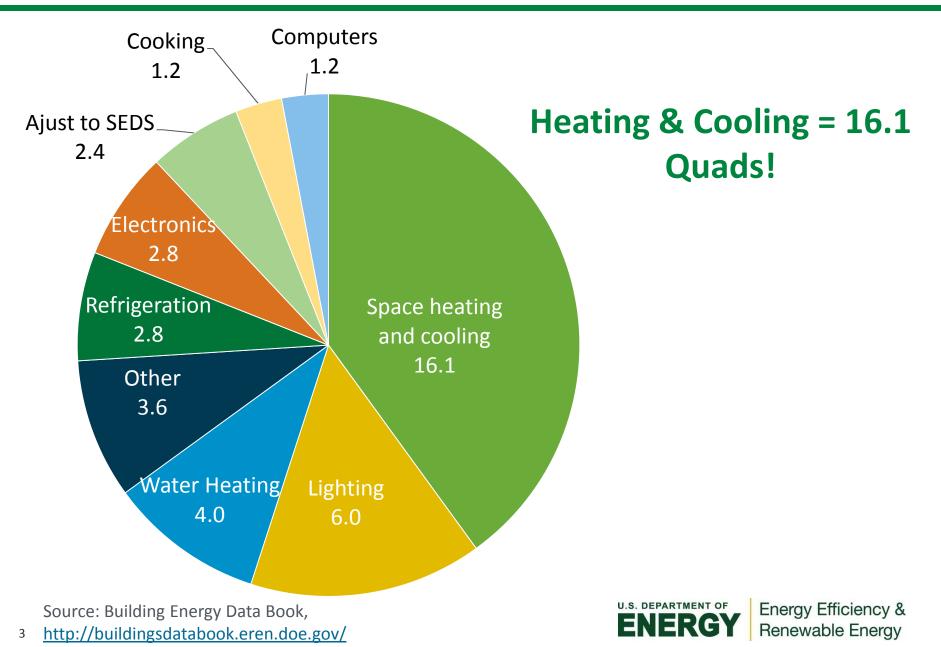
Building Envelope R&D Overview

BTO Peer Review 2017

Energy Efficiency & **ENERGY** Renewable Energy


Sven C. Mumme – Technology Manager sven.mumme@ee.doe.gov March 16, 2017

~75% of the electricity ~40% of all primary energy Residential, 22% Commercial, 18%

In 2050, ~75% of existing building stock will still be in service.

Commercial & Residential Primary Energy End Use (Quads)

Energy Losses in the Building Envelope

Primary energy consumption attributable to fenestration and building envelope components in 2010

Building Component	Residential (quads)		Commercial (quads)	
	Heating	Cooling	Heating	Cooling
Roofs	1.00	0.49	0.88	0.05
Walls	1.54	0.34	1.48	-0.03
Foundation	1.17	-0.22	0.79	-0.21
Infiltration	2.26	0.59	1.29	-0.15
Window (conduction)	2.06	0.03	1.60	-0.30
Window (solar heat gain)	-0.66	1.14	-0.97	1.38

Adapted from the BTO Multi-Year Program Plan: https://energy.gov/eere/buildings/downloads/multi-year-program-plan

Building Envelope R&D

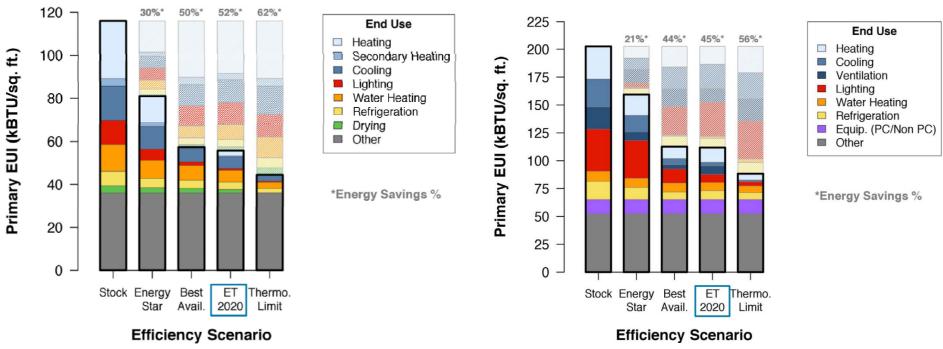
 By 2030, reduce energy use per square foot of U.S. buildings by 30%, with a longer term goal of achieving 50% reduction, relative to a 2010 baseline. ET Goal Enable the development of cost-effective technologies capable of reducing a building's energy use per square foot by 30% by 2020 and cutting a building's use by 45% by 2030, relative to 2010 high-efficiency technologies. 	 Develop technology roadmaps Prioritize opportunities Solicit and select innovative technology solutions Collaborate with researchers Solve technical barriers and test innovations to prove effectiveness Measure and validate energy savings
--	--

Building Envelope Sub-Program Goal

• To accelerate the development of next-generation building envelope technologies that reduce the energy required to heat and cool a building with a specific emphasis on achieving a market-acceptable installed cost to facilitate wide-scale adoption, especially for existing buildings.

Two R&D Thrusts

- 1. New materials and manufacturing processes for thermal insulation that can be applied to walls in existing residential and commercial buildings and roofing technologies for commercial buildings.
- 2. New air-sealing systems and tools that are capable of preventing uncontrolled heat, moisture, and airflow at reduced installation costs.

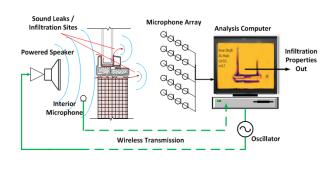


Priority areas for envelope R&D based on the roadmap

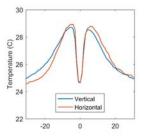
Technology	2025 Installed Cost Premium Target	2025 Performance Target		
Highest Priority R&D Areas				
Building envelope insulation	≤ \$0.25/ft ²	 ≥ R-12/inch thermal insulation material for retrofitting walls Meets durability requirements Minimizes occupant disturbance 		
Air-sealing technologies	≤ \$0.5/ft ² finished floor	 Residential < 1 ACH50 Commercial: < 0.25 CFM75/ft² Concurrently regulates heat, air, and moisture 		
High Priority R&D Area				
Highly insulating roofs (commercial)	≤ \$1/ft ² over standard roof costs	Energy use reduction equivalent to doubling current ASHRAE R-values		

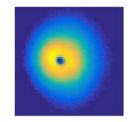
QTR results reflect the potential benefits of envelope R&D

Commercial Energy (Composite, All Regions)

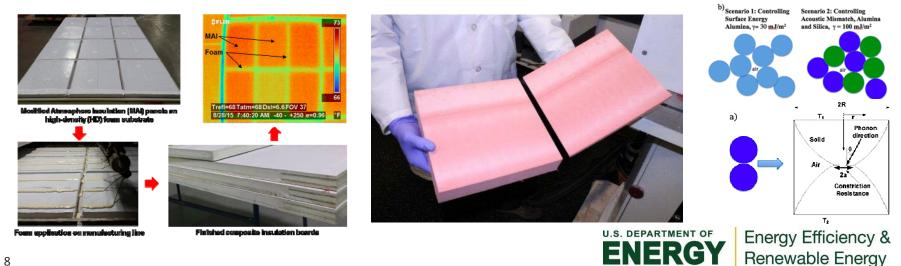

ET 2020 – ET Multi-year Program Plan Targets for 2020

Residential Energy (Single Family, All Regions)




Highlight of Current Building Envelope R&D Projects

• Performance analysis, evaluation, validation; infiltration diagnostics;



• High R/inch insulation

Areas of interest for envelope

- "Seamless" interfaces/transitions between functional areas (e.g., roof-walls, walls-windows)
 - Air and moisture infiltration, installation cost, construction errors
- Simple, accurate, low cost methods for evaluating envelope air sealing/infiltration
- "Soft" costs as a fraction of total installed costs
- Products and methods that reduce retrofit cost and complexity
 - Air sealing products and methods that remediate flaws and infiltration points
 - Elimination of thermal bridges in the envelope system
- Active/passive thermal and hygrothermal management
- Separations

What Is the Next Step

- Updating Windows and Building Envelope Roadmap
- Holding workshops
 Next Tent. May 2017
- Think out of the box

9:00-9:30 ORNL - Probabilistic Analysis of the Performance of Air Barrier Systems
9:30-10:00 ORNL - Development and Validation of Fraunhofer Attic Thermal Model (FATM)
10:00-10:30 ORNL - Insulated Siding for Energy Efficient Building Envelopes
10:30-11:00 BREAK
11:00-11:30 ORNL - R25 Polyisocyanurate Composite Insulation Material
11:30-12:00 Iowa State University - Novel Infiltration Diagnostics based on Laser-line Scanning and Infrared Temperature Field Imaging
12:00-12:30 ANL - Acoustic Building Infiltration Measurement System (ABIMS)
12:30-12:45 ET - Envelope Wrap-Up [Reviewers and BTO Only]

Any questions?

My Contact Info:

Sven C. Mumme

Technology Manager

U.S. Department of Energy | Building Technologies Office | EE-5B

sven.mumme@ee.doe.gov

