

Building America

Advanced Technical Solutions for Zero Energy Ready Homes: Renewable Integration

November 16, 2016

Moderator:

Linh Truong– National Renewable Energy Laboratory

Panelists:

Tim Merrigan – National Renewable Energy Laboratory Chrissi Antonopoulos – Pacific Northwest National Laboratory

Some Housekeeping Items

Two Options for Audio (select audio mode):

1. Listen through your computer.

Please select the "mic and speakers" radio button on the right hand audio pane display

2. Listen by telephone.

Please select the "telephone" option in the right-hand display, and a phone number and PIN will display.

- 3. Panelists Please mute your audio device when not presenting
- 4. Technical Difficulties: Contact the GoToWebinars Help Desk: 888.259.3826

Some Housekeeping Items (cont'd)

To ask a question:

Select the 'questions' pane on your screen and type in your question.

If you are having difficulty viewing the materials through the webinar portal:

You may find PDF copies of the presentation at the website listed here and you may follow along as our speaker presents. Today's webinar is being recorded and the recording will be available on the DOE YouTube channel within a few weeks.

http://energy.gov/eere/buildings/building-america-meetings#current

Agenda

✓ Welcome and Introductory Remarks

✓ Overview of Building America (buildingamerica.gov)

Linh Truong - National Renewable Energy Laboratory

✓ Presentations

- Tim Merrigan National Renewable Energy Laboratory
- Chrissi Antonopoulos Pacific Northwest National Laboratory
- ✓ Questions and Answers
- ✓ Closing Remarks

Building America

Building America Website:

- Program information
- Top Innovations
- Climate-specific case studies
- Building America Update newsletter
- Building America Solution Center
- Publications Library

www.buildingamerica.gov

Building America Webinar Series - 2016

Advanced Technical Solutions for Zero Energy Ready Homes: Renewable Integration

Tim Merrigan, Senior Project Leader, National Renewable Energy Laboratory

Tim joined NREL in 1999. His research focuses on buildingintegrated renewables, solar water heating technology development, PV/thermal system development, and integrated solar heating and cooling systems. Prior to joining NREL, Tim was with the Florida Solar Energy Center for 20 years, conducting research in solar thermal systems and building energy efficiency. Tim served as the chair of the ASHRAE Technical Committee for Solar Energy Utilization, served as the chair of the Standards Committee for the Solar Rating & Certification Corporation (SRCC), and was on the Board of Directors for the Colorado Solar Energy Industries Association (COSEIA).

Chrissi Antonopoulos, Senior Project Leader, Pacific Northwest National Laboratory

Chrissi Antonopoulos joined PNNL's Portland office in 2010 and has worked on a broad range of projects ranging from green buildings, residential energy efficiency, appliance efficiency standards and smart grid development. Chrissi is currently an Energy Research Scientist working with the Energy Technology Market Adoption Team to enhance the presence of green technologies in the commercial marketplace. Current work includes analysis of green building technology diffusion in the commercial building sector, valuation of energy efficient residential homes, and website development for energy efficient programs. Chrissi has lead research tasks focusing on code development for renewable energy technologies, and market forecasting of green building in the commercial sector. Chrissi has a B.S. in Business Administration, and a Master's of Urban Studies with a focus on energy technologies and sustainable development, from Portland State University. She is an active member of local energy efficiency organizations including Oregon BEST, and the Northwest Environmental Business Council, and has been an invited speaker to the American Council for an Energy Efficient Economy, Summer Study on Energy Efficiency in Buildings.

Advanced Technical Solutions for Zero Energy Ready Homes: Renewable Integration

Tim Merrigan

NREL tim.merrigan@nrel.gov

16 November 2016

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Zero Energy Ready Home

A Zero Energy Ready Home (ZERH) is a high-performance home that is so energy efficient, that a renewable energy system can offset all or most of its annual energy consumption.

ZERH program builders have requested guidance on designing for the future integration of renewable technologies as well as ensuring that they will be installed in accordance with code and utility requirements. This project addresses this ZERH program need.

Webinar Outline

- Building-applied PV vs. Building-integrated PV (BIPV)
- Current U.S. BIPV Products
- Historical BIPV Price Premium
- BIPV Cost Analysis
- BIPV Cost-competitive Potential
- BIPV Performance
- BIPV Code Acceptance Criteria
- BIPV Glass Applications
- BIPV Summary

Tesla Solar Roof Unveiling – Oct. 28,

https://www.tesla.com/solar

Discontinued PV Roof Integration Products

- Applied Solar PV tile
- Astropower / GE Energy PV tile
- BP Solar Energy Tile
- Dow Solar Powerhouse Solar System 2.0 PV shingle
- ECD/Unisolar flexible a-Si laminate
- Solexel (with Owens Corning) PV shingle
- SoloPower flexible CIGS laminate
- Open Energy SolarSave tile
- Powerlight /SunPower SunTile
- SRS Energy / Sole Powertile
- Sharp Solar PV tile
- Suntech SolarBlend Roof Tile

NIST Residential Roof Photovoltaic Test Facility (2006)

Building-applied PV (BAPV) vs.

PV Mounted on Roof

PV Integrated into Front or Rear Porch Roof Directly on Porch Framing

Conventional PV System Installation vs. Integrated PV Porch Roof (Source: Sam Rashkin, DOE BTO)

Stand-off Mounted BAPV

BAPV: Rail-Less Stand-off Mounting

BIPV Roofing Tiles and Solar Shingles

BIPV Products – Roofing shingles and roofing tiles

			Size	Weight (lbs)		Power @	Temp	Nominal		ASTM D3161	UL 790	Impact	Warranty
Company	Model	BIPV	(Length x	(lbs per 100	PV	STC	Coefficient	Operating	Frame /	Wind	Fire	Resistance	(years @
		Туре	Width)	sq. ft.)	Туре	(Watts)	@ P _{mp}	Cell Temp	Color	Resistance	Rating	(hail	rated W)
							(% per C)	(C)				diameter)	
Atlantis	Sunslates6	Slate tile	19.625″ x	14.4	mc-Si	23	-0.108 (?)	51.2	Black frame	125 mph	Class A		20
Energy			14.5″	(730 lbs per					/Blue				
Systems				square)									
Atlantis	TallSlate	Slate tile	47.25″ x	17	mc-Si	42			Black frame	125 mph	Class A		20
Energy			12.125″						/Blue				
Systems													
BIPV Inc.	BIPV050, 052,	Shingle,			pc-Si	50, 52, 54							
	054	tile											
CertainTeed	Apollo II Tile	Tile	47"	13	mc-Si	60	-0.45	53.5	Brown	Class F	Class A		25
(Saint-Gobain)			x 17.25″	(307 lbs per					frame /	(150 mph)			
				square)					black cells				
CertainTeed	Apollo II	Shingle	46.75″ x	12	mc-Si	60	-0.45	55.6	Black /	Class F	Class A		25
(Saint-Gobain)		_	17.625″						black cells	(150 mph)			
Englert	<u>SunNet</u>	Metal			Thin-	68, 136,							
		roofing			film	144							
Global Solar /	PowerFLEX	Flexible	1.6'x6.6',1	(68 lbs per	CIGS	90 - 300	-0.430		Frameless /				25 @
Hanergy	<u>BIPV</u>	module	2.8′,8.7′	square)					Green				80% W
SunTegra	<u>SunTegra</u>	Tile	52.75″ x	15	mc-Si	64, 67	-0.420	57	Black, gray,	110 mph	Class A	25 mm @ 25	25
(Integrated			15.875"	(300 lbs per					brown			m/s	
Solar				square)					frame				
Technology)													
SunTegra	SunTegra	Shingle	52.625" x	18	mc-Si	95, 100	-0.420	55		130 mph	Class A	25 mm @ 23	25
(Integrated			23.125"	(250 lbs per								m/s	
Solar Tech)				square)									
Luma	<u>LRSS</u>	Shingle	54.37″ x	19.8	pc-Si	60	-0.37		Black /		Class A		25 @
Resources			15.62"						Blue cells				80% W
Lumeta	<u>LPP-175S,</u>	Shingle,	3.28' x	17.6	mc-Si	175, 185	-0.40	55	Frameless	120 mph	Class A		
	LPP-185T	Tile	3.94'					(+-2)	/Blue cells				
Miasole /	<u>FLEX-02W,</u>	Flexible	102.3″ x	13.7	CIGS	340-380,	-0.38				Class A		10
Hanergy	<u>FLEX-02N,</u>	module	39.4"			110-130,					(over		
	FLEX-02NL					265-305					ТРО		
Modular Solar	<u>Soltrak</u>	Polymer	15.1" x	4.9	pc-Si	11.5			Light gray		Class C		
Roofing		Tile	15.3″	(360 lbs per									
				square)									
Solarmass	Ergosun	Tile	11.7″ x	(123 lbs per	mc-Si	15.3	-0.4	48	Custom			25 mm @ 25	
			13.5″	square)								m/s	

BIPV Roofing Tiles – Premier Homes, California

BIPV vs. Rack-mounted PV Prices –

California

Installation Year

Installed Price of BIPV vs. Rack-Mounted Systems in Residential New Construction (Source: Barbose, Darghouth, Weaver, and Wiser, "Tracking the Sun VI," LBNL-6350E)

BIPV Cost Analysis

Scenarios Used to Analyze Residential Rooftop PV System Prices

(Source: James, Goodrich, Woodhouse, Margolis, and Ong, NREL/TP-6A20-53103)

Scenario	Technology	Form	Efficiency	Module Area (m ²)
PV Reference Case	c-Si	Rigid	14.5%	1.28
BIPV Derivative Case	c-Si	Rigid	13.8%	0.58
BIPV Thin-film Case 1	CIGS	Rigid	11.2%	0.58
BIPV Thin-film Case 2	a-Si	Flexible	5.8%	0.58

BIPV Derivative Case Material Costs and Labor Requirements

	Component	Installation labor alloc	ation require	ements	
	costs		Units/	Electrical	General
Material Category	(\$/W)	Units	s ys tem	(hours/unit)	(hours/unit)
Module	2.37*	Modules	68		0.07
Inverter	\$0.42	Inverters	1	4	2
Wiring	\$0.07	Linear feet (ft)	541†	0.05	
Other electrical‡	\$0.17	Electrical subsystem	1	4.5	
Mounting hardware	\$0.00	Module racks	0		0
Total materials cost	\$3.03				
Total installation labor	requirements			35.6	6.8

* Ex-factory gate price (\$1.95/W, 2010 Photon) + retail margin (10%) + BIPV mark-up (10%) = \$2.37/W

+ Total wiring (541 ft) = home run wiring (141 ft) + row to combiner wiring (400 ft)

"Other electrical" includes: meter, system monitor, and disconnects.

BIPV Cost Analysis

Price differences between the rack-mounted PV Reference Case and the BIPV Derivative Case (Source: James, Goodrich, Woodhouse, Margolis, and Ong, NREL/TP-6A20-53103)

BIPV Cost Analysis

Price Comparison of PV Reference Case and 3 BIPV Cases

(Source: James, Goodrich, Woodhouse, Margolis, and Ong, NREL/TP-6A20-53103)

BIPV Performance – PV cell temperatures

PV Module Mounting Configuration

- Free standing (open ground-mounted rack)
- Roof-mounted (stand-off mount above the roof)
- Roof-integrated (no backside ventilation)

Typical Operating Cell Temperature

- 20-35 C above ambient
- 30-40 C above ambient

40-50 C above ambient

BIPV Performance – Roofing tiles

Source: Muller, Rodriquez, and Marion, NREL/CP-520-45948

BIPV Levelized Cost of Energy (LCOE)

(Source: James, Goodrich, Woodhouse, Margolis, and Ong, NREL/TP-6A20-53103)

BIPV Code Acceptance Criteria

ICC Evaluation Service AC365

"Acceptance Criteria for Building-Integrated Photovoltaic (BIPV) Roof Covering Systems"

Scope: This criteria is applicable to BIPV roof modules, shingles and panels, complying with UL 1703, used in roof covering systems. The electrical safety requirements and solar energy performance of the BIPV roof modules, shingles and panels are outside the scope of this criteria.

TEST AND PERFORMANCE REQUIREMENTS

- 3.1.1 Fire Classification Test
- 3.1.2 Wind Resistance
- 3.1.3 Wind-driven Rain
- 3.1.4 Durability
 - 3.1.4.1.1 Impact Resistance
 - 3.1.4.1.2 Temperature Cycling Test
 - 3.1.4.1.3 Humidity Test

PV Awning

BIPV Porch Cover and Entrance Canopy

(Source: Lumos Solar)

BIPV Products – Semi-transparent PV glass

				Power @ STC	Light	Impact	Availability	Warranty
Company	Model	BIPV Type	PV	(Watts)	Transmittance	Resistance	(if not off-	(years @
(HQ Location)			Technology		(%)	(hail	the-shelf)	rated W)
						diameter		
Atlantis Energy	PV Skylight	Frameless glass-	pc-Si,	120 - 125	7 – 50 (Custom)			10 (80%)
<u>Systems</u>		on-glass	mc-Si					
Brite Solar	PanePower		Dye-					
(Greece)	(Solar		sensitized					
	Windows)		solar cells					
Lumos Solar	LSX Module	Frameless glass-	mc-Si	245 - 260	10 (Landscape)	2 inch		12 (90%) 25
(USA)	System	on-glass			12 (Portrait)	(FM 4473		(80%)
						Class 4)		
Onyx Solar (Spain)	PV Glass	Frameless glass-	a-Si, CIS,		10, 20, 30			
		on-glass	CIGS, mc-Si,					
			pc-Si					
Panasonic (Japan)	ніт	Glass-on-glass / Al	Hetero-	190 - 330			Special	10 (90%) 25
	(bifacial)	frame module	junction mc-				order	(80%)
	Double 225		Si w/ thin					
			a–Si layer					
Polysolar (UK)	PV Glazing	Frameless glass-	a-Si, CdTe, c-	85 - 135				5 – 10 (90%)
		on-glass	Si					
Prism Solar	PV glass	Frameless glass-	mc-Si	286 – 298,				
	(bifacial)	on-glass		362 - 375				
<u>Sapa Solar</u>		Glass-on-glass	a-Si, mc-Si,					
			pc-Si					
<u>Solaria</u>	PV Window	IGU (glass-on-	CIGS				Pre-	
		glass)					commercial	
<u>Stion</u>	Elevation	Frameless glass-	CIGS	135 - 155				10 (90%) 25
		on-glass						(80%)
Sunpreme	Bifacial	Frameless glass-	Hybrid cell	310 - 370				10 (product)
	thin-film	on-glass	technology					5 (95%)

BIPV Porch Roof

All of the 962-ft2 porch roof is comprised of 69 solar panels that don't sit on top of the roof; they are the roof. The completely watertight structure allows about 15% of natural light to filter through the panels, lighting the space below. All wiring is hidden within the canopy's aluminum support beams.

Insulated Glass Unit with PV glass

Semi-transparent PV glass has recently been used as the outside layer of an insulated glass unit for building facades. By ventilating the airspace between the outside and inside layers of the IGU, SHGCs less than 0.15 were measured along with a visible light transmittance of 7% for an experimental IGU utilizing semi-transparent a-Si thin film.

(Source: Peng, Curcija, Lu, Selkowitz, Yang, and Zhang, "Numerical investigation of the energy saving potential of a semitransparent photovoltaic double-skin façade in a cool-summer Mediterranean climate," Applied Energy 165 (2016))

BIPV Summary

- <u>Historical BIPV Price Premium.</u> While aesthetically pleasing, BIPV roofing systems historically have had at least a 10 percent price premium over typical rack-mounted PV systems in new residential construction.
- <u>BIPV Performance</u>. Because residential BIPV roofing products operate at higher temperatures than typical rack-mounted PV modules, they produce 3 to 5% less energy on an annual basis than a comparably-sized rack-mounted system.
- <u>BIPV Increased Modularity.</u> Because BIPV roofing products typically come in smaller module sizes than rack-mounted PV modules, any small annual energy difference can easily be compensated for by increased system area.
- <u>BIPV Cost-competitive Potential.</u> By eliminating PV module mounting hardware and from offsetting the cost of traditional roofing materials, both c-Si BIPV shingles and CIGS thin-film BIPV systems have the potential to be competitive with rack mounted PV on a LCOE basis.
- <u>BIPV Glass Applications.</u> Semi-transparent BIPV glass has been used sparingly for porch and patio covers in residential construction, but its use is becoming more common to provide daylighting in commercial and institutional buildings. Typical visible light transmittance for semi-transparent BIPV glass is 10 to 15 percent.
- <u>BIPV Installation.</u> Most residential BIPV roofing products have undergone testing and evaluation to the International Code Council's "Acceptance Criteria for Building-Integrated Photovoltaic (BIPV) Roof Covering Systems." Another installation consideration for BIPV products that are mounted directly on the roof sheathing is that they typically do not allow for the use of module-level power electronics like microinverters and DC power optimizers.

Zero Energy Ready Home

DOE Tour of Zero http://energy.gov/eere/buildings/doe-tour-zero

Home » DOE Tour of Zero: Gordon Estates by Mandalay Homes

DOE TOUR OF ZERO: GORDON ESTATES BY MANDALAY HOMES

Building South of Energy

ENERGY.GOV Office of Energy Efficiency & Renewable Energy Services EFFICIENCY RENEWABLES TRANSPORTATION ABOUT US OFFICES >

Horne = DOE Tour of Zero, Gordon Salates by Mandalay Home

DOE TOUR OF ZERO: GORDON ESTATES BY MANDALAY HOMES

"WHEN I SAW MY FIRST BILL AND I COMPARED IT TO MY LAST HOME'S BILL, I WAS SO IMPRESSED."

Илипарани Нотекси Корси параке тири на каки политик. With na iso with home south norms. With have set off with the south norms. With na iso with home south norms. With have set off with home south norms. With have set off with home south norms. With have south norms. - Mandaby homesant

enhanced guide and comfun - Comprehensive diret protection - Prevent as system for to center, heather indoor all - High-efficiency comfort system - High-efficiency comfort system - High-efficiency comfort system advanced lighting technically for energy and water servings. Read more.

Proudly Operated by Battelle Since 1965

Building America Solution Center Renewable Integration Resources

CHRISSI ANTONOPOULOS

Pacific Northwest National Laboratory Building America Webinar, November 16, 2016

April 20, 2017

BASC Homepage

ENERGY Energy Efficiency & Renewable Energy

Building America Solution Center

Solution Center Home

Help

FIND YOUR TOPIC BY:

Building Components

Guides A-Z

ENERGY STAR Certified Homes

Zero Energy Ready Home

EPA Indoor airPLUS

FIND RESOURCES:

Sales Tool

CAD Files

Image Gallery

Case Studies

Videos

Optimized Climate Solutions

Code Briefs

Library

FIND PUBLICATIONS:

Building Science Publications The Building America Solution Center provides access to expert information on hundreds of high-performance construction topics, including air sealing and insulation, HVAC components, windows, indoor air quality, and much more. Click on the links below to explore the Solution Center.

As a community driven tool, we welcome your <u>comments</u> and how to continuously improve the Solution Center. If you are interested in submitting content, please become a <u>registered user</u> and see the <u>criteria for submissions</u>.

Program Checklists

Access guides directly from checklists for Access guides for new and existing homes. Zero Energy Ready Home, ENERGY STAR based on building components of interest. Certified Home, and Indoor airPLUS

Sales Tool Translate building science technical terms into a new language of value.

Building Science Pubs Search library of building science publications from Building America.

based on building components of interest.

Building Components

Climate Packages

Review new home energy efficiency specifications and case studies that exceed 2009 IECC by 30%.

Mobile App Join our mobile community to access saved field kits wherever you need them.

Log In Register

RECENTLY ADDED/UPDATED GUIDES

Interior Paints and Finishes Certified Low-Emission Last Updated: August 19, 2016 Certified Low-Emission Carpet Adhesives and Carpet Last Updated: July 27, 2016 Certified Low-Emission Composite Wood Products Last Updated: July 27, 2016 More Guides

RECENTLY ADDED CONTENT

Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers Version 1.1 (California 01350) Reference Posted: August, 2016 Interior paints and finishes certified low-emission Image Posted: August, 2016 Indoor airPLUS carpet examples Image Posted: July, 2016

https://basc.pnnl.gov/

Proudly Operated by Battelle Since 1965

DOE Zero Energy Ready Home Checklists

Proudly Operated by Battelle Since 1965

ENERGY Energy Efficiency & Renewable Energy

Building America Solution Center

Solution Center Home

Help

FIND YOUR TOPIC BY:

Building Components

Guides A-Z

ENERGY STAR Certified Homes

Zero Energy Ready Home

EPA Indoor airPLUS

FIND RESOURCES:

Sales Tool

CAD Files

Image Gallery

Case Studies

Videos

Optimized Climate Solutions

Code Briefs

Library

FIND PUBLICATIONS:

Building Science Publications The Building America Solution Center provides access to expert information on hundreds of high-performance construction topics, including air sealing and insulation, HVAC components, windows, indoor air quality, and much more. Click on the links below to explore the Solution Center.

As a community driven tool, we welcome your <u>comments</u> and how to continuously improve the Solution Center. If you are interested in submitting content, please become a <u>registered user</u> and see the criteria for submissions

Program Checklists

Access guides directly from checklists for Zero Energy Ready Home, ENERGY STAR backlists for Certified Home, and Indoor airPLUS

Sales Tool Translate building science technical terms into a new language of value.

Building Science Pubs Search library of building science publications from Building America.

Building Components Access guides for new and existing homes based on building components of interest.

based on building components of intere

Climate Packages

Review new home energy efficiency specifications and case studies that exceed 2009 IECC by 30%.

Mobile App Join our mobile community to access saved field kits wherever you need them.

Log In Register

Enter your keywork SEARCH

RECENTLY ADDED/UPDATED GUIDES

Interior Paints and Finishes Certified Low-Emission Last Updated: August 19, 2016 Certified Low-Emission Carpet Adhesives and Carpet Last Updated: July 27, 2016 Certified Low-Emission Composite Wood Products Last Updated: July 27, 2016 More Guides

RECENTLY ADDED CONTENT

Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers Version 1.1 (California 01350) Reference Posted: August, 2016 Interior paints and finishes certified low-emission Image Posted: August, 2016 Indoor airPLUS carpet examples Image Posted: July, 2016

DOE Zero Energy Ready Home Program Checklist

Pacific Northwest

Proudly Operated by Battelle Since 1965

ENERGY Energy Efficiency & Renewable Energy

Building America Solution Center

Log In Register

SEARCH

EERE » BTO » Building America » Solution Center » Checklists

Solution Center Home

DOE Zero Energy Ready Home

FIND YOUR TOPIC BY:

Building Components

Guides A-Z

ENERGY STAR Certified Homes

Zero Energy Ready Home

EPA Indoor airPLUS

FIND RESOURCES:

Sales Tool

CAD Files

Image Gallery

Case Studies

Videos

Optimized Climate Solutions

Code Briefs

Library

FIND PUBLICATIONS:

Building Science Publications The U.S. Department of Energy (DOE) Zero Energy Ready Home checklists provide links to technical guides for each measure included in the checklists for DOE's Zero Energy Ready Home National Program Requirements . The numbers and titles included in the checklists follow the same order and have the same names as those in the DOE Zero Energy Ready National Program Requirements. To view programmatic footnotes, see the current program requirements. Portions of programmatic footnotes have been added to the Scope tabs in the guides. Visit the DOE Zero Energy Ready Home program website to learn more about training and marketing tools, to find a builder, or to become a partner. The Building America Solution Center is an ever expanding and improving technical resource for builders and installers. Not all measures may be populated at this time. Checklist measures with black type are not currently populated and do not link to content. Visit often to see the latest guides, resources, and additional content.

Exhibit 1: Mandatory Requirements for All Labeled Homes

Exhibit 2: Target Home

Exhibit 3: Benchmark Home Size

Contact Us Web Site Policies U.S. Department of Energy USA.gov

Click accordions to expand checklist items and access BASC guides for installation

DOE Zero Energy Ready Home Renewable Ready Checklists

ENERGY Energy Efficiency & Renewable Energy

Building America Solution Center

EERE » BTO » Building America » Solution Center » Checklists

Solution Center Home

DOE Zero Energy Ready Home

FIND YOUR TOPIC BY: **Building Components**

Guides A-Z

ENERGY STAR Certified Homes

Zero Energy Ready Home

EPA Indoor airPLUS

EIND RESOURCES:

Sales Tool

CAD Files

Image Gallery

Case Studies

Videos

Optimized Climate Solutions

Code Briefs

Library

FIND PUBLICATIONS:

Building Science Publications

Click to link to the PV/SHW checklists

measure included in the checklists for DOE's Zero Energy Ready Home National Program Requirements 📆 . The numbers and titles included in the checklists follow the same order and have the same names as those in the DOE Zero Energy Ready National Program Requirements. To view programmatic footnotes, see the current program requirements. Portions of programmatic footnotes have been added to the Scope tabs in the guides. Visit the DOE Zero Energy Ready Home program website to learn more about training and marketing tools, to find a builder, or to become a partner. The Building America Solution Center is an ever expanding and improving technical resource for builders and installers. Not all measures may be populated at this time. Checklist measures with black type are not currently populated and do not link to content. Visit often to see the latest guides, resources, and additional content.

* Exhibit 1: Mandatory Requirements for All Labeled Homes
> 1.0 ENERGY STAR for Homes Baseline
> 2.0 Envelope
> 3.0 Duct System
> 4.0 Water Efficiency
▶ 5.0 Lighting & Appliances
→ 6.0 Indoor Air Quality
* 7.0 Renewable Ready
PV-and Solar Hot Water-Ready Checklists
Exhibit 2: Target Home
Exhibit 3: Benchmark Home Size

Log In Register

Enter your keywon SEARCH

Proudly Operated by Battelle Since 1965

DOE Zero Energy Ready Home Renewable Ready Checklists

ENERGY Energy Efficiency & Renewable Energy

Solution Center Home

FIND YOUR TOPIC BY:

Building Components

ENERGY STAR Certified

Guides A-Z

Homes Zero Energy Read EPA Indoor airPLU FIND RESOURCES: Sales Tool CAD Files Image Gallery **Case Studies** Videos Optimized Climate Solutions Code Briefs Library FIND PUBLICATIO **Building Science** Publications

Help

Building America Solution Center

EERE » BTO » Building America » Solution Center » Checklists

DOE Zero Energy Ready Home PV-and Solar Hot Water-Ready Checklists

Renewable energy is an important part of the path to zero energy homes. The PV-Ready 🔁 and Solar Hot Water-Ready 🔂 checklists below provide links to technical guides that align with each measure included in the checklist, which are mandatory requirements of the DOE Zero Energy Ready Home program. The Building America Solution Center is an ever expanding and improving technical resource for builders and installers. Not all measures may be populated at this time. Checklist measures with black type are not currently populated and do not link to content. Visit often to see the latest guides, resources, and additional content.

 Building/Array Site Assessment Structural and Safety Considerations Renewable Energy Ready Home Solar Photovoltaic Infrastructure Install a 1" metal conduit for the DC wire run from the designated array location to the designated inverter location (cap and label both ends) Install a 1" metal conduit from designated inverter location to electrical service panel (cap and label both ends) Install and label a 4' x 4' plywood panel area for mounting an inverter and balance of system components Install and label a 70-amp dual note circuit breaker in the electrical service panel for use by the PV system (lab 	Zero Energy Ready Home Program Certification Requirements
Structural and Safety Considerations Structural and Safety Considerations Renewable Energy Ready Home Solar Photovoltaic Infrastructure Install a 1" metal conduit for the DC wire run from the designated array location to the designated inverter location (cap and label both ends) Install a 1" metal conduit from designated inverter location to electrical service panel (cap and label both ends Install and label a 4' x 4' plywood panel area for mounting an inverter and balance of system components Install and label a 4' x - 4' plywood panel area for mounting an inverter and balance of system components	> Building/Array Site Assessment
 Renewable Energy Ready Home Solar Photovoltaic Infrastructure Install a 1" metal conduit for the DC wire run from the designated array location to the designated inverter location (cap and label both ends) Install a 1" metal conduit from designated inverter location to electrical service panel (cap and label both ends) Install and label a 4' x 4' plywood panel area for mounting an inverter and balance of system components Install and label a 70-amp dual pole circuit breaker in the electrical service panel for use by the PV system (lab 	Structural and Safety Considerations
Install a 1" metal conduit for the DC wire run from the designated array location to the designated inverter location (cap and label both ends) Install a 1" metal conduit from designated inverter location to electrical service panel (cap and label both ends Install and label a 4' x 4' plywood panel area for mounting an inverter and balance of system components Install and label a 70-amp dual pole circuit breaker in the electrical service panel for use by the PV system (lab	* Renewable Energy Ready Home Solar Photovoltaic Infrastructure
Install a 1" metal conduit from designated inverter location to electrical service panel (cap and label both ends Install and label a 4' x 4' plywood panel area for mounting an inverter and balance of system components Install and label a 70-amp dual pole circuit breaker in the electrical service panel for use by the PV system (lab	Install a 1" metal conduit for the DC wire run from the designated array location to the designated inverter
Install and label a 4' x 4' plywood panel area for mounting an inverter and balance of system components Install and label a 70-amp dual pole circuit breaker in the electrical service panel for use by the PV system (lab	Install a 1" metal conduit from designated inverter location to electrical service panel (cap and label both ends)
Install and label a 70-amp dual note circuit breaker in the electrical service nanel for use by the PV system (lab	Install and label a 4' x 4' plywood panel area for mounting an inverter and balance of system components
motal and laber a vol amp data pole circuit predicti in the electrical berries panel for abe by the r v bybeen (ide	Install and label a 70-amp dual pole circuit breaker in the electrical service panel for use by the PV system (label

Solar Water Heating Checklist

Contact Us Web Site Policies U.S. Department of Energy USA.gov

Choose a checklist item to access the installation guide

Pacific Northwest NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

Enter your keywor SEARCH

BASC Guide

U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy

Building America Solution Center

EERE » BTO » Building America » Solution Center » Guides

Solution Center Home	70-An	np Dual-P	ole Cir	cuit Br	eaker	for P	V Syster	ms		
Help									.	ويت ا
FIND YOUR TOPIC BY:							S Print	t this page		
Building Components	Scope	Description	Success	Climate	Training	CAD	Compliance	e More	Sales	
Guides A-Z										
ENERGY STAR Certified Homes	Scot	be								MOBILE FIELD KIT
Zero Energy Ready Home	Includ	er for a future	70 amp du solar phot	ial-pole cir ovoltaic (P	v)	Part P		1	int H	The Building America Field Kit allows
EPA Indoor airPLUS	syster	m when buildin	g a Renew	able Ener	gy	d - 5 10-			S. S	you to save items to your profile for
FIND RESOURCES:	Ready	Home (RERH)	If possib	le, place th	ne _	the star			A ADVE	review or use on-site.
Sales Tool	balan	ce of system co	omponents	for the P	V.	Po Hear			4 204	Sign Up
CAD Files	Space	requirements	and layou	t for solar	Greto				Save E	
Image Gallery	photo	voltaic system	component	ts should	be 🚆	to Literon	and without it	G	a court of	or
Case Studies	Laken	into account e	any in the	design pr	ocess.	Onyer			17 11.	Log In
Videos	DOE 2	Zero Energy R	eady Hom	e Notes	4	5.1~			tunt	
Optimized Climate	The U	.S. Department	t of Energy	(DOE) <u>Ze</u>	ro			1 (1) (1) (1)	nur fear	
Solutions	Energ	y Ready Home	National P	rogram						
Code Briefs	Manda	atory Requirem	iudes in Ei ients, Item	n 7 Renewa	able					
Library	Ready	, that all home	s must me	et the req	uirements	in the	Consolidated	d Renewa	able	
FIND PUBLICATIONS:	Energ	y Ready Home	(RERH) Ch	ecklist.						
Building Science Publications	The R	ERH Checklist r	equires bu	uilders to:						
	• Ins the	stall a 70-amp (PV system (la	dual pole c bel the se	ircuit brea rvice pane	ker in the (I) (RERHPV	electric Guide	al service pa 3.4)	inel for us	se by	
	Altern	native: Provide	a labeled	slot for a	double-pol	e brea	ker in the ele	ectrical se	ervice.	
	Last Upd	lated: 08/04/2	014							J

Pacific Northwest

Log In Register

Enter your keywor SEARCH

Proudly Operated by Battelle Since 1965

Renewables Guides in Building Components Tool

Proudly Operated by Battelle Since 1965

Become part of the Solution Center community!

- Register for free to customize content
 - Create Field Kits
 - Create Point-of-Sale Fact Sheets and Training Materials
 - Access saved and created content from your mobile device

Proudly Operated by Battelle Since 1965

Create new account Log in Request new password

User information

Username*

Spaces are allowed; punctuation is not allowed except for periods, hyphens, apostrophes, and underscores.

E-mail Address*

A valid e-mail address. All e-mails from the system will be sent to this address. The e-mail address is not made public

Work Experience

- Select a value -	-
Construction Type *	
New and Existing Homes	*
New Homes	
Existing Homes	

. . .

State	
Alabama	*
Alaska	
Arizona	
Arkansas	-

Climate Zone *

All Climate Zones	*
Zone 1	
Zone 2	
Zone 3	-

Building America Newsletter

Visit the Meetings page at:

<u>http://energy.gov/eere/buildings/building-america-</u> meetings#current

Subscribe to notices about webinars and other news at:

http://energy.gov/eere/buildings/subscribe-building-america-updates

Thank You!

PDF copies of the presentations in this webinar are available at: <u>http://energy.gov/eere/buildings/building-</u> <u>america-meetings#current</u>

Visit: www.buildingamerica.gov

NERGY En

Energy Efficiency & Renewable Energy

